gProfiler_cellWeighted_Foldchange {scMappR} | R Documentation |
Pathway enrichment for cwFold-changes
Description
This function runs through each list of cell weighted Fold changes (cwFold-changes) and completes both pathway and transcription factor (TF) enrichment.
Usage
gProfiler_cellWeighted_Foldchange(
cellWeighted_Foldchange_matrix,
species,
background,
gene_cut,
newGprofiler
)
Arguments
cellWeighted_Foldchange_matrix |
Matrix of cell weighted Fold changes from the deconvolute_and_contextualize functions. |
species |
Human, mouse, or a name that is compatible with gProfileR (e.g. "mmusculus"). |
background |
A list of background genes to test against. |
gene_cut |
The top number of genes in pathway analysis. |
newGprofiler |
Using gProfileR or gprofiler2, (T/F). |
Details
This function takes a matrix of cellWeighted_Foldchange and a species (human, mouse, or a character directly compatible with g:ProfileR). Before completing pathway analysis with g:ProfileR. Enriched pathways are stored in a list and returned.
Value
List with the following elements:
BP |
gprofiler enrichment of biological pathways for each cell-type |
TF |
gprofiler enrichment of transcription factors for eachc cell-type. |
Examples
data(PBMC_example)
bulk_DE_cors <- PBMC_example$bulk_DE_cors
bulk_normalized <- PBMC_example$bulk_normalized
odds_ratio_in <- PBMC_example$odds_ratio_in
case_grep <- "_female"
control_grep <- "_male"
max_proportion_change <- 10
print_plots <- FALSE
theSpecies <- "human"
norm <- deconvolute_and_contextualize(count_file = bulk_normalized,
signature_matrix = odds_ratio_in,
DEG_list = bulk_DE_cors, case_grep = case_grep,
control_grep = control_grep,
max_proportion_change = max_proportion_change,
print_plots = print_plots,
theSpecies = theSpecies)
background = rownames(bulk_normalized)
STVs <- gProfiler_cellWeighted_Foldchange(
cellWeighted_Foldchange_matrix = norm$cellWeighted_Foldchange,
species = theSpecies, background = background, gene_cut = -9,
newGprofiler = TRUE)