scISR {scISR} | R Documentation |
scISR: Single-cell Imputation using Subspace Regression
Description
Perform single-cell Imputation using Subspace Regression
Usage
scISR(
data,
ncores = 1,
force_impute = FALSE,
do_fast = TRUE,
preprocessing = TRUE,
batch_impute = FALSE,
seed = 1
)
Arguments
data |
Input matrix or data frame. Rows represent genes while columns represent samples |
ncores |
Number of cores that the algorithm should use. Default value is |
force_impute |
Always perform imputation. |
do_fast |
Use fast imputation implementation. |
preprocessing |
Perform preprocessing on original data to filter out low quality features. |
batch_impute |
Perform imputation in batches to reduce memory consumption. |
seed |
Seed for reproducibility. Default value is |
Details
scISR performs imputation for single-cell sequencing data. scISR identifies the true dropout values in the scRNA-seq dataset using hyper-geomtric testing approach. Based on the result obtained from hyper-geometric testing, the original dataset is segregated into two subsets including training data and imputable data. Next, training data is used for constructing a generalize linear regression model that is used for imputation on the imputable data.
Value
scISR
returns an imputed single-cell expression matrix where rows represent genes while columns represent samples.
Examples
{
# Load the package
library(scISR)
# Load Goolam dataset
data('Goolam');
# Use only 500 random genes for example
set.seed(1)
raw <- Goolam$data[sample(seq_len(nrow(Goolam$data)), 500), ]
label <- Goolam$label
# Perform the imputation
imputed <- scISR(data = raw)
if(requireNamespace('mclust'))
{
library(mclust)
# Perform PCA and k-means clustering on raw data
set.seed(1)
# Filter genes that have only zeros from raw data
raw_filer <- raw[rowSums(raw != 0) > 0, ]
pca_raw <- irlba::prcomp_irlba(t(raw_filer), n = 50)$x
cluster_raw <- kmeans(pca_raw, length(unique(label)),
nstart = 2000, iter.max = 2000)$cluster
print(paste('ARI of clusters using raw data:',
round(adjustedRandIndex(cluster_raw, label),3)))
# Perform PCA and k-means clustering on imputed data
set.seed(1)
pca_imputed <- irlba::prcomp_irlba(t(imputed), n = 50)$x
cluster_imputed <- kmeans(pca_imputed, length(unique(label)),
nstart = 2000, iter.max = 2000)$cluster
print(paste('ARI of clusters using imputed data:',
round(adjustedRandIndex(cluster_imputed, label),3)))
}
}