scdeco.pg {scDECO} | R Documentation |
ZENCO Poisson Gamma dynamic correlation fitting function
Description
ZENCO Poisson Gamma dynamic correlation fitting function
Usage
scdeco.pg(
dat,
b0,
b1,
adapt_iter = 100,
update_iter = 100,
coda_iter = 1000,
coda_thin = 5,
coda_burnin = 100
)
Arguments
dat |
matrix containing expression values as first two columns and covariate as third column |
b0 |
intercept of zinf parameter |
b1 |
slope of zinf parameter |
adapt_iter |
number of adaptation iterations in the jags.model function |
update_iter |
update iterations in the update function |
coda_iter |
number of iterations for the coda.sample function |
coda_thin |
how much to thin the resulting MCMC output |
coda_burnin |
how many iterations to burn before beginning coda sample collection |
Value
MCMC samples that have been adapted, burned, and thinned
Examples
phi1_use <- 4
phi2_use <- 4
phi3_use <- 1/7
mu1_use <- 15
mu2_use <- 15
mu3_use <- 7
b0_use <- -3
b1_use <- 0.1
tau0_use <- -2
tau1_use <- 0.4
simdat <- scdeco.sim.pg(N=1000, b0=b0_use, b1=b1_use,
phi1=phi1_use, phi2=phi2_use, phi3=phi3_use,
mu1=mu1_use, mu2=mu2_use, mu3=mu3_use,
tau0=tau0_use, tau1=tau1_use)
zenco_out <- scdeco.pg(dat=simdat,
b0=b0_use, b1=b1_use,
adapt_iter=1, # 500,
update_iter=1, # 500,
coda_iter=5, # 5000,
coda_thin=1, # 10,
coda_burnin=0) # 1000
boundsmat <- cbind(zenco_out$quantiles[,1],
c(1/phi1_use, 1/phi2_use, 1/phi3_use,
mu1_use, mu2_use, mu3_use,
tau0_use, tau1_use),
zenco_out$quantiles[,c(3,5)])
colnames(boundsmat) <- c("lower", "true", "est", "upper")
boundsmat
[Package scDECO version 0.1.0 Index]