predict.sbde {sbde} | R Documentation |
Posterior predictive Summary for Semiparametric Density Estimation
Description
Extract posterior predictive density estimate for sbde
Usage
## S3 method for class 'sbde'
predict(object, burn.perc = 0.5, nmc = 200, yRange = range(object$y), yLength = 401, ...)
Arguments
object |
a fitted model of the class 'sbde'. |
burn.perc |
a positive fraction indicating what fraction of the saved draws are to be discarded as burn-in |
nmc |
integer giving the number of samples, post burn-in, to be used in Monte Carlo averaging |
yRange |
Range of values over which posterior predictive density is to be evaluated. |
yLength |
Number of grid points spanning yRange for posterior predictive density evaluation. |
... |
no additional parameters are used. |
Value
Returns a list with three items:
y |
vector giving the grid over which the posterior predictive density is evaluated. |
fsamp |
a matrix with |
fest |
summary of the posterior predictive density given by point-wise median, 2.5th and 97.5th percentiles. |
See Also
sbde
, coef.sbde
and summary.sbde
.
Examples
y <- abs(rt(n=1000, df=4))
fit <- sbde(y, blocking="all", fbase="gpd", verbose=FALSE)
pp <- predict(fit)
hist(y, 50, freq=FALSE)
with(pp, for(j in 1:3) lines(y, fest[,j], lty=1+(j!=2)))