| svd2 {sanic} | R Documentation | 
Singular Value Decomposition
Description
Solvers for generalized eigenproblems around the matrix A. Compute
singular values \Sigma, left singular vectors U and
right singular vectors V of A, such that
A = U \Sigma V^*. Two different types are available: (1)
bidiagonal divide and conquer strategy (BDC) SVD, and (2) two-sided Jacobi
SVD for small matrices (<16) and high accuracy.
Usage
svd2(a, type = c("BDC", "Jacobi"), vectors = TRUE, thin = TRUE)
Arguments
| a | Numeric matrix. | 
| type | Character scalar. Whether to use BDC or Jacobi SVD. | 
| vectors | Logical scalar indicating whether singular vectors should be computed and returned. | 
| thin | Logical scalar indicating whether singular vectors should be returned in thinned or full format. | 
Value
Solves the generalised eigenproblem and returns a list with
singular values in the "d" component and, if requested, singular
vectors in the components "u" and "v".
Examples
set.seed(42)
# Compute singular values and vectors using BDC
A <- matrix(rnorm(9), nrow = 3, ncol = 3)
sv <- svd2(A)
# Compute singular values using Jacobi
A <- matrix(rnorm(9), nrow = 3, ncol = 3)
sv <- svd2(A, type = "J", vectors = FALSE)
# Compute singular values and full vectors using BDC
A <- matrix(rnorm(12), nrow = 4, ncol = 3)
sv <- svd2(A, type = "B", thin = FALSE)
A <- matrix(rnorm(12), nrow = 3, ncol = 4)
sv <- svd2(A, type = "B", thin = FALSE)
[Package sanic version 0.0.2 Index]