VE.SYG.Total.NHT {samplingVarEst} | R Documentation |
The Sen-Yates-Grundy variance estimator for the Narain-Horvitz-Thompson point estimator for a total
Description
Computes the Sen (1953); Yates-Grundy(1953) variance estimator for the Narain (1951); Horvitz-Thompson (1952) point estimator for a population total.
Usage
VE.SYG.Total.NHT(VecY.s, VecPk.s, MatPkl.s)
Arguments
VecY.s |
vector of the variable of interest; its length is equal to |
VecPk.s |
vector of the first-order inclusion probabilities; its length is equal to |
MatPkl.s |
matrix of the second-order inclusion probabilities; its number of rows and columns equals |
Details
For the population total of the variable y
:
t = \sum_{k\in U} y_k
the unbiased Narain (1951); Horvitz-Thompson (1952) estimator of t
is given by:
\hat{t}_{NHT} = \sum_{k\in s} \frac{y_k}{\pi_k}
where \pi_k
denotes the inclusion probability of the k
-th element in the sample s
. Let \pi_{kl}
denotes the joint-inclusion probabilities of the k
-th and l
-th elements in the sample s
. The variance of \hat{t}_{NHT}
is given by:
V(\hat{t}_{NHT}) = \sum_{k\in U}\sum_{l\in U} (\pi_{kl}-\pi_k\pi_l)\frac{y_k}{\pi_k}\frac{y_l}{\pi_l}
which, if the utilised sampling design is of fixed sample size, can therefore be estimated by the Sen-Yates-Grundy variance estimator (implemented by the current function):
\hat{V}(\hat{t}_{NHT}) = \frac{-1}{2}\sum_{k\in s}\sum_{l\in s} \frac{\pi_{kl}-\pi_k\pi_l}{\pi_{kl}}\left(\frac{y_k}{\pi_k}-\frac{y_l}{\pi_l}\right)^2
Value
The function returns a value for the estimated variance.
Author(s)
Emilio Lopez Escobar.
References
Horvitz, D. G. and Thompson, D. J. (1952) A generalization of sampling without replacement from a finite universe. Journal of the American Statistical Association, 47, 663–685.
Narain, R. D. (1951) On sampling without replacement with varying probabilities. Journal of the Indian Society of Agricultural Statistics, 3, 169–175.
Sen, A. R. (1953) On the estimate of the variance in sampling with varying probabilities. Journal of the Indian Society of Agricultural Statistics, 5, 119–127.
Yates, F. and Grundy, P. M. (1953) Selection without replacement from within strata with probability proportional to size. Journal of the Royal Statistical Society B, 15, 253–261.
See Also
VE.HT.Total.NHT
VE.Hajek.Total.NHT
Examples
data(oaxaca) #Loads the Oaxaca municipalities dataset
pik.U <- Pk.PropNorm.U(373, oaxaca$HOMES00) #Reconstructs the 1st order incl. probs.
s <- oaxaca$sHOMES00 #Defines the sample to be used
y1 <- oaxaca$POP10 #Defines the variable of interest y1
y2 <- oaxaca$HOMES10 #Defines the variable of interest y2
#This approximation is only suitable for large-entropy sampling designs
pikl.s <- Pkl.Hajek.s(pik.U[s==1]) #Approx. 2nd order incl. probs. from s
#Computes the var. est. of the NHT point estimator for y1
VE.SYG.Total.NHT(y1[s==1], pik.U[s==1], pikl.s)
#Computes the var. est. of the NHT point estimator for y2
VE.SYG.Total.NHT(y2[s==1], pik.U[s==1], pikl.s)