VE.Lin.SYG.Ratio {samplingVarEst} | R Documentation |
The unequal probability linearisation variance estimator for the estimator of a ratio (Sen-Yates-Grundy form)
Description
Computes the unequal probability Taylor linearisation variance estimator for the estimator of a ratio of two totals/means. It uses the Sen (1953); Yates-Grundy(1953) variance form.
Usage
VE.Lin.SYG.Ratio(VecY.s, VecX.s, VecPk.s, MatPkl.s)
Arguments
VecY.s |
vector of the numerator variable of interest; its length is equal to |
VecX.s |
vector of the denominator variable of interest; its length is equal to |
VecPk.s |
vector of the first-order inclusion probabilities; its length is equal to |
MatPkl.s |
matrix of the second-order inclusion probabilities; its number of rows and columns equals |
Details
For the population ratio of two totals/means of the variables y
and x
:
R = \frac{\sum_{k\in U} y_k/N}{\sum_{k\in U} x_k/N} = \frac{\sum_{k\in U} y_k}{\sum_{k\in U} x_k}
the ratio estimator of R
is given by:
\hat{R} = \frac{\sum_{k\in s} w_k y_k}{\sum_{k\in s} w_k x_k}
where w_k=1/\pi_k
and \pi_k
denotes the inclusion probability of the k
-th element in the sample s
. The variance of \hat{R}
can be estimated by the unequal probability linearisation variance estimator (implemented by the current function). For details see Woodruff (1971); Deville (1999); Demnati-Rao (2004); Sarndal et al., (1992, Secs. 5.5 and 5.6):
\hat{V}(\hat{R}) = \frac{-1}{2}\sum_{k\in s}\sum_{l\in s} \frac{\pi_{kl}-\pi_k\pi_l}{\pi_{kl}} (w_k u_k - w_l u_l)^{2}
where
u_k = \frac{y_k - \hat{R} x_k}{\hat{t}_{x,NHT}}
with
\hat{t}_{x,NHT} = \sum_{k\in s} w_k x_k
the unbiased Narain (1951); Horvitz-Thompson (1952) estimator of the population total for the (denominator) variable VecX.s
.
Value
The function returns a value for the estimated variance.
Author(s)
Emilio Lopez Escobar.
References
Demnati, A. and Rao, J. N. K. (2004) Linearization variance estimators for survey data. Survey Methodology, 30, 17–26.
Deville, J.-C. (1999) Variance estimation for complex statistics and estimators: linearization and residual techniques. Survey Methodology, 25, 193–203.
Horvitz, D. G. and Thompson, D. J. (1952) A generalization of sampling without replacement from a finite universe. Journal of the American Statistical Association, 47, 663–685.
Narain, R. D. (1951) On sampling without replacement with varying probabilities. Journal of the Indian Society of Agricultural Statistics, 3, 169–175.
Sarndal, C.-E. and Swensson, B. and Wretman, J. (1992) Model Assisted Survey Sampling. Springer-Verlag, Inc.
Sen, A. R. (1953) On the estimate of the variance in sampling with varying probabilities. Journal of the Indian Society of Agricultural Statistics, 5, 119–127.
Woodruff, R. S. (1971) A Simple Method for Approximating the Variance of a Complicated Estimate. Journal of the American Statistical Association, 66, 334, 411–414.
Yates, F. and Grundy, P. M. (1953) Selection without replacement from within strata with probability proportional to size. Journal of the Royal Statistical Society B, 15, 253–261.
See Also
VE.Lin.HT.Ratio
VE.Jk.Tukey.Ratio
VE.Jk.CBS.HT.Ratio
VE.Jk.B.Ratio
VE.Jk.EB.SW2.Ratio
VE.EB.HT.Ratio
VE.EB.SYG.Ratio
Examples
data(oaxaca) #Loads the Oaxaca municipalities dataset
pik.U <- Pk.PropNorm.U(373, oaxaca$HOMES00) #Reconstructs the 1st order incl. probs.
s <- oaxaca$sHOMES00 #Defines the sample to be used for
y1 <- oaxaca$POP10 #Defines the numerator variable y1
y2 <- oaxaca$POPMAL10 #Defines the numerator variable y2
x <- oaxaca$HOMES10 #Defines the denominator variable x
#This approximation is only suitable for large-entropy sampling designs
pikl.s <- Pkl.Hajek.s(pik.U[s==1]) #Approx. 2nd order incl. probs. from s
#Computes the var. est. of the ratio point estimator using y1
VE.Lin.SYG.Ratio(y1[s==1], x[s==1], pik.U[s==1], pikl.s)
#Computes the var. est. of the ratio point estimator using y2
VE.Lin.SYG.Ratio(y2[s==1], x[s==1], pik.U[s==1], pikl.s)