VE.Jk.Tukey.Ratio {samplingVarEst} | R Documentation |
The Tukey (1958) jackknife variance estimator for the estimator of a ratio
Description
Computes the Quenouille(1956); Tukey (1958) jackknife variance estimator for the estimator of a ratio of two totals/means.
Usage
VE.Jk.Tukey.Ratio(VecY.s, VecX.s, VecPk.s, N, FPC= TRUE)
Arguments
VecY.s |
vector of the numerator variable of interest; its length is equal to |
VecX.s |
vector of the denominator variable of interest; its length is equal to |
VecPk.s |
vector of the first-order inclusion probabilities; its length is equal to |
N |
the population size. It must be an integer or a double-precision scalar with zero-valued fractional part. This information is also utilised for the finite population correction; see |
FPC |
logical value. If an ad hoc finite population correction |
Details
For the population ratio of two totals/means of the variables y
and x
:
R = \frac{\sum_{k\in U} y_k/N}{\sum_{k\in U} x_k/N} = \frac{\sum_{k\in U} y_k}{\sum_{k\in U} x_k}
the ratio estimator of R
is given by:
\hat{R} = \frac{\sum_{k\in s} w_k y_k}{\sum_{k\in s} w_k x_k}
where w_k=1/\pi_k
and \pi_k
denotes the inclusion probability of the k
-th element in the sample s
. The variance of \hat{R}
can be estimated by the Quenouille(1956); Tukey (1958) jackknife variance estimator (implemented by the current function):
\hat{V}(\hat{R}) = \left(1-\frac{n}{N}\right)\frac{n-1}{n}\sum_{k\in s} \left( \hat{R}_{(k)}-\hat{R} \right)^2
where
\hat{R}_{(k)} = \frac{\sum_{l\in s, l\neq k} w_l y_l}{\sum_{l\in s, l\neq k} w_l x_l}
We are implementing the Tukey (1958) jackknife variance estimator using the ‘ad hoc’ finite population correction 1-n/N
(see Shao and Tu, 1995; Wolter, 2007). If FPC=FALSE
, then the term 1-n/N
is omitted from the above formula.
Value
The function returns a value for the estimated variance.
Author(s)
Emilio Lopez Escobar.
References
Quenouille, M. H. (1956) Notes on bias in estimation. Biometrika, 43, 353–360.
Shao, J. and Tu, D. (1995) The Jackknife and Bootstrap. Springer-Verlag, Inc.
Tukey, J. W. (1958) Bias and confidence in not-quite large samples (abstract). The Annals of Mathematical Statistics, 29, 2, p. 614.
Wolter, K. M. (2007) Introduction to Variance Estimation. 2nd Ed. Springer, Inc.
See Also
VE.Lin.HT.Ratio
VE.Lin.SYG.Ratio
VE.Jk.CBS.HT.Ratio
VE.Jk.CBS.SYG.Ratio
VE.Jk.B.Ratio
VE.Jk.EB.SW2.Ratio
VE.EB.HT.Ratio
VE.EB.SYG.Ratio
Examples
data(oaxaca) #Loads the Oaxaca municipalities dataset
pik.U <- Pk.PropNorm.U(373, oaxaca$HOMES00) #Reconstructs the 1st order incl. probs.
s <- oaxaca$sHOMES00 #Defines the sample to be used
N <- dim(oaxaca)[1] #Defines the population size
y1 <- oaxaca$POP10 #Defines the numerator variable y1
y2 <- oaxaca$POPMAL10 #Defines the numerator variable y2
x <- oaxaca$HOMES10 #Defines the denominator variable x
#Computes the var. est. of the ratio point estimator using y1
VE.Jk.Tukey.Ratio(y1[s==1], x[s==1], pik.U[s==1], N)
#Computes the var. est. of the ratio point estimator using y2
VE.Jk.Tukey.Ratio(y2[s==1], x[s==1], pik.U[s==1], N, FPC= FALSE)