VE.Jk.CBS.HT.Ratio {samplingVarEst} | R Documentation |
The Campbell-Berger-Skinner unequal probability jackknife variance estimator for the estimator of a ratio (Horvitz-Thompson form)
Description
Computes the Campbell(1980); Berger-Skinner(2005) unequal probability jackknife variance estimator for the estimator of a ratio of two totals/means. It uses the Horvitz-Thompson (1952) variance form.
Usage
VE.Jk.CBS.HT.Ratio(VecY.s, VecX.s, VecPk.s, MatPkl.s)
Arguments
VecY.s |
vector of the numerator variable of interest; its length is equal to |
VecX.s |
vector of the denominator variable of interest; its length is equal to |
VecPk.s |
vector of the first-order inclusion probabilities; its length is equal to |
MatPkl.s |
matrix of the second-order inclusion probabilities; its number of rows and columns equals |
Details
For the population ratio of two totals/means of the variables y
and x
:
R = \frac{\sum_{k\in U} y_k/N}{\sum_{k\in U} x_k/N} = \frac{\sum_{k\in U} y_k}{\sum_{k\in U} x_k}
the ratio estimator of R
is given by:
\hat{R} = \frac{\sum_{k\in s} w_k y_k}{\sum_{k\in s} w_k x_k}
where w_k=1/\pi_k
and \pi_k
denotes the inclusion probability of the k
-th element in the sample s
. The variance of \hat{R}
can be estimated by the Campbell(1980); Berger-Skinner(2005) unequal probability jackknife variance estimator (implemented by the current function):
\hat{V}(\hat{R}) = \sum_{k\in s}\sum_{l\in s} \frac{\pi_{kl}-\pi_k\pi_l}{\pi_{kl}} \varepsilon_k \varepsilon_l
where
\varepsilon_k = \left(1-\tilde{w}_k\right) \left(\hat{R}-\hat{R}_{(k)}\right)
with
\tilde{w}_k = \frac{w_k}{\sum_{l\in s} w_l}
and
\hat{R}_{(k)} = \frac{\sum_{l\in s, l\neq k} w_l y_l/\sum_{l\in s, l\neq k} w_l}{\sum_{l\in s, l\neq k} w_l x_l/\sum_{l\in s, l\neq k} w_l} = \frac{\sum_{l\in s, l\neq k} w_l y_l}{\sum_{l\in s, l\neq k} w_l x_l}
Value
The function returns a value for the estimated variance.
Author(s)
Emilio Lopez Escobar.
References
Campbell, C. (1980) A different view of finite population estimation. Proceedings of the Survey Research Methods Section of the American Statistical Association, 319–324.
Berger, Y. G. and Skinner, C. J. (2005) A jackknife variance estimator for unequal probability sampling. Journal of the Royal Statistical Society B, 67, 79–89.
Horvitz, D. G. and Thompson, D. J. (1952) A generalization of sampling without replacement from a finite universe. Journal of the American Statistical Association, 47, 663–685.
See Also
VE.Lin.HT.Ratio
VE.Lin.SYG.Ratio
VE.Jk.Tukey.Ratio
VE.Jk.CBS.SYG.Ratio
VE.Jk.B.Ratio
VE.Jk.EB.SW2.Ratio
VE.EB.HT.Ratio
VE.EB.SYG.Ratio
Examples
data(oaxaca) #Loads the Oaxaca municipalities dataset
pik.U <- Pk.PropNorm.U(373, oaxaca$HOMES00) #Reconstructs the 1st order incl. probs.
s <- oaxaca$sHOMES00 #Defines the sample to be used
y1 <- oaxaca$POP10 #Defines the numerator variable y1
y2 <- oaxaca$POPMAL10 #Defines the numerator variable y2
x <- oaxaca$HOMES10 #Defines the denominator variable x
#This approximation is only suitable for large-entropy sampling designs
pikl.s <- Pkl.Hajek.s(pik.U[s==1]) #Approx. 2nd order incl. probs. from s
#Computes the var. est. of the ratio point estimator using y1
VE.Jk.CBS.HT.Ratio(y1[s==1], x[s==1], pik.U[s==1], pikl.s)
#Computes the var. est. of the ratio point estimator using y2
VE.Jk.CBS.HT.Ratio(y2[s==1], x[s==1], pik.U[s==1], pikl.s)