VE.Jk.B.Ratio {samplingVarEst} | R Documentation |
The Berger (2007) unequal probability jackknife variance estimator for the estimator of a ratio
Description
Computes the Berger (2007) unequal probability jackknife variance estimator for the estimator of a ratio of two totals/means.
Usage
VE.Jk.B.Ratio(VecY.s, VecX.s, VecPk.s)
Arguments
VecY.s |
vector of the numerator variable of interest; its length is equal to |
VecX.s |
vector of the denominator variable of interest; its length is equal to |
VecPk.s |
vector of the first-order inclusion probabilities; its length is equal to |
Details
For the population ratio of two totals/means of the variables y
and x
:
R = \frac{\sum_{k\in U} y_k/N}{\sum_{k\in U} x_k/N} = \frac{\sum_{k\in U} y_k}{\sum_{k\in U} x_k}
the ratio estimator of R
is given by:
\hat{R} = \frac{\sum_{k\in s} w_k y_k}{\sum_{k\in s} w_k x_k}
where w_k=1/\pi_k
and \pi_k
denotes the inclusion probability of the k
-th element in the sample s
. The variance of \hat{R}
can be estimated by the Berger (2007) unequal probability jackknife variance estimator (implemented by the current function):
\hat{V}(\hat{R}) = \sum_{k\in s} \frac{n}{n-1}(1-\pi_k) \left(\varepsilon_k - \hat{B}\right)^{2}
where
\hat{B} = \frac{\sum_{k\in s}(1-\pi_k) \varepsilon_k}{\sum_{k\in s}(1-\pi_k)}
and
\varepsilon_k = \left(1-\tilde{w}_k\right) \left(\hat{R}-\hat{R}_{(k)}\right)
with
\tilde{w}_k = \frac{w_k}{\sum_{l\in s} w_l}
and
\hat{R}_{(k)} = \frac{\sum_{l\in s, l\neq k} w_l y_l/\sum_{l\in s, l\neq k} w_l}{\sum_{l\in s, l\neq k} w_l x_l/\sum_{l\in s, l\neq k} w_l} = \frac{\sum_{l\in s, l\neq k} w_l y_l}{\sum_{l\in s, l\neq k} w_l x_l}
Note that this variance estimator implicitly utilises the Hajek (1964) approximations that are designed for large-entropy sampling designs, large samples, and large populations, i.e., care should be taken with highly-stratified samples, e.g. Berger (2005).
Value
The function returns a value for the estimated variance.
Author(s)
Emilio Lopez Escobar.
References
Berger, Y. G. (2005) Variance estimation with highly stratified sampling designs with unequal probabilities. Australian & New Zealand Journal of Statistics, 47, 365–373.
Berger, Y. G. (2007) A jackknife variance estimator for unistage stratified samples with unequal probabilities. Biometrika 94, 953–964.
Hajek, J. (1964) Asymptotic theory of rejective sampling with varying probabilities from a finite population. The Annals of Mathematical Statistics, 35, 4, 1491–1523.
See Also
VE.Lin.HT.Ratio
VE.Lin.SYG.Ratio
VE.Jk.Tukey.Ratio
VE.Jk.CBS.HT.Ratio
VE.Jk.CBS.SYG.Ratio
VE.Jk.EB.SW2.Ratio
VE.EB.HT.Ratio
VE.EB.SYG.Ratio
Examples
data(oaxaca) #Loads the Oaxaca municipalities dataset
pik.U <- Pk.PropNorm.U(373, oaxaca$HOMES00) #Reconstructs the 1st order incl. probs.
s <- oaxaca$sHOMES00 #Defines the sample to be used
y1 <- oaxaca$POP10 #Defines the numerator variable y1
y2 <- oaxaca$POPMAL10 #Defines the numerator variable y2
x <- oaxaca$HOMES10 #Defines the denominator variable x
#Computes the var. est. of the ratio point estimator using y1
VE.Jk.B.Ratio(y1[s==1], x[s==1], pik.U[s==1])
#Computes the var. est. of the ratio point estimator using y2
VE.Jk.B.Ratio(y2[s==1], x[s==1], pik.U[s==1])