VE.EB.SYG.Ratio {samplingVarEst} | R Documentation |
The Escobar-Berger unequal probability replicate variance estimator for the estimator of a ratio (Sen-Yates-Grundy form)
Description
Computes the Escobar-Berger (2013) unequal probability replicate variance estimator for the estimator of a ratio of two totals/means. It uses the Sen (1953); Yates-Grundy(1953) variance form.
Usage
VE.EB.SYG.Ratio(VecY.s, VecX.s, VecPk.s, MatPkl.s,
VecAlpha.s = rep.int(1, length(VecPk.s)))
Arguments
VecY.s |
vector of the numerator variable of interest; its length is equal to |
VecX.s |
vector of the denominator variable of interest; its length is equal to |
VecPk.s |
vector of the first-order inclusion probabilities; its length is equal to |
MatPkl.s |
matrix of the second-order inclusion probabilities; its number of rows and columns equals |
VecAlpha.s |
vector of the |
Details
For the population ratio of two totals/means of the variables y
and x
:
R = \frac{\sum_{k\in U} y_k/N}{\sum_{k\in U} x_k/N} = \frac{\sum_{k\in U} y_k}{\sum_{k\in U} x_k}
the ratio estimator of R
is given by:
\hat{R} = \frac{\sum_{k\in s} w_k y_k}{\sum_{k\in s} w_k x_k}
where w_k=1/\pi_k
and \pi_k
denotes the inclusion probability of the k
-th element in the sample s
. The variance of \hat{R}
can be estimated by the Escobar-Berger (2013) unequal probability replicate variance estimator (implemented by the current function):
\hat{V}(\hat{R}) = \frac{-1}{2}\sum_{k\in s}\sum_{l\in s} \frac{\pi_{kl}-\pi_k\pi_l}{\pi_{kl}} (\breve{\nu}_k - \breve{\nu}_l)^{2}
where
\breve{\nu}_k = w_k^{\alpha_k} \left(\hat{R}-\hat{R}_k^{*}\right)
for some \alpha_k\geq0
(suggested to be 1, see below comments) and with
\hat{R}_k^{*} = \frac{\left(\sum_{l\in s} w_l y_l - w_k^{1-\alpha_k} y_k\right)/\left(\sum_{l\in s} w_l - w_k^{1-\alpha_k} \right)}{\left(\sum_{l\in s} w_l x_l - w_k^{1-\alpha_k} x_k\right)/\left(\sum_{l\in s} w_l - w_k^{1-\alpha_k} \right)} = \frac{\sum_{l\in s} w_l y_l - w_k^{1-\alpha_k} y_k}{\sum_{l\in s} w_l x_l - w_k^{1-\alpha_k} x_k}
Regarding the value of \alpha_k
, Escobar-Berger (2013) show that \hat{V}(\hat{R})
is valid for
\alpha_k\geq0
but conclude that \alpha_k>0
should be used as \alpha_k=0
corresponds to a naive biased and unstable jackknife. They recommend \alpha_k=1
or \alpha_k>1
. If \alpha_k=1
, \hat{V}(\hat{R})
reduces to the Escobar-Berger (2011) jackknife. Using \alpha_k>1
approximates the empirical influence function, i.e. the Gateaux (1919) derivative, or Demnati-Rao (2004) linearisation variance estimators. The larger the \alpha_k
, the closer the approximation. Further, Escobar-Berger (2013) give an intuitive explanation of the replication method from a jackknife and bootstrap perspective.
Value
The function returns a value for the estimated variance.
Author(s)
Emilio Lopez Escobar.
References
Demnati, A. and Rao, J. N. K. (2004) Linearization variance estimators for survey data. Survey Methodology, 30, 17–26.
Escobar, E. L. and Berger, Y. G. (2011) Jackknife variance estimation for functions of Horvitz-Thompson estimators under unequal probability sampling without replacement. In Proceeding of the 58th World Statistics Congress. Dublin, Ireland: International Statistical Institute.
Escobar, E. L. and Berger, Y. G. (2013) A new replicate variance estimator for unequal probability sampling without replacement. Canadian Journal of Statistics 41, 3, 508–524.
Gateaux, R. (1919) Fonctions d'une infinite de variables indeependantes. Bulletin de la Societe Mathematique de France, 47, 70–96.
Sen, A. R. (1953) On the estimate of the variance in sampling with varying probabilities. Journal of the Indian Society of Agricultural Statistics, 5, 119–127.
Yates, F. and Grundy, P. M. (1953) Selection without replacement from within strata with probability proportional to size. Journal of the Royal Statistical Society B, 15, 253–261.
See Also
VE.Lin.HT.Ratio
VE.Lin.SYG.Ratio
VE.Jk.Tukey.Ratio
VE.Jk.CBS.HT.Ratio
VE.Jk.CBS.SYG.Ratio
VE.Jk.B.Ratio
VE.Jk.EB.SW2.Ratio
VE.EB.HT.Ratio
Examples
data(oaxaca) #Loads the Oaxaca municipalities dataset
pik.U <- Pk.PropNorm.U(373, oaxaca$HOMES00) #Reconstructs the 1st order incl. probs.
s <- oaxaca$sHOMES00 #Defines the sample to be used
y1 <- oaxaca$POP10 #Defines the numerator variable y1
y2 <- oaxaca$POPMAL10 #Defines the numerator variable y2
x <- oaxaca$HOMES10 #Defines the denominator variable x
Alpha.s <- rep(2, times=373) #Defines the vector with Alpha values
#This approximation is only suitable for large-entropy sampling designs
pikl.s <- Pkl.Hajek.s(pik.U[s==1]) #Approx. 2nd order incl. probs. from s
#Computes the var. est. of the ratio point estimator using y1
VE.EB.SYG.Ratio(y1[s==1], x[s==1], pik.U[s==1], pikl.s) #Using default VecAlpha.s
#Computes the var. est. of the ratio point estimator using y2
VE.EB.SYG.Ratio(y2[s==1], x[s==1], pik.U[s==1], pikl.s, Alpha.s)