VE.EB.HT.Total.Hajek {samplingVarEst} | R Documentation |
The Escobar-Berger unequal probability replicate variance estimator for the Hajek (1971) estimator of a total (Horvitz-Thompson form)
Description
Computes the Escobar-Berger (2013) unequal probability replicate variance estimator for the Hajek estimator of a total. It uses the Horvitz-Thompson (1952) variance form.
Usage
VE.EB.HT.Total.Hajek(VecY.s, VecPk.s, MatPkl.s, N,
VecAlpha.s = rep.int(1, length(VecPk.s)))
Arguments
VecY.s |
vector of the variable of interest; its length is equal to |
VecPk.s |
vector of the first-order inclusion probabilities; its length is equal to |
MatPkl.s |
matrix of the second-order inclusion probabilities; its number of rows and columns equals |
N |
the population size. It must be an integer or a double-precision scalar with zero-valued fractional part. |
VecAlpha.s |
vector of the |
Details
For the population total of the variable y
:
t = \sum_{k\in U} y_k
the approximately unbiased Hajek (1971) estimator of t
is given by:
\hat{t}_{Hajek} = N \frac{\sum_{k\in s} w_k y_k}{\sum_{k\in s} w_k}
where w_k=1/\pi_k
and \pi_k
denotes the inclusion probability of the k
-th element in the sample s
. The variance of \hat{t}_{Hajek}
can be estimated by the Escobar-Berger (2013) unequal probability replicate variance estimator (implemented by the current function):
\hat{V}(\hat{t}_{Hajek}) = \sum_{k\in s}\sum_{l\in s} \frac{\pi_{kl}-\pi_k\pi_l}{\pi_{kl}} \breve{\nu}_k \breve{\nu}_l
where
\breve{\nu}_k = w_k^{\alpha_k} \left(\hat{t}_{Hajek}-\hat{t}_{Hajek,k}^{*}\right)
for some \alpha_k\geq0
(suggested to be 1, see below comments) and with
\hat{t}_{Hajek,k}^{*} = N \frac{\sum_{l\in s} w_l y_l - w_k^{1-\alpha_k} y_k}{\sum_{l\in s} w_l - w_k^{1-\alpha_k}}
Regarding the value of \alpha_k
, Escobar-Berger (2013) show that \hat{V}(\hat{t}_{Hajek})
is valid for
\alpha_k\geq0
but conclude that \alpha_k>0
should be used as \alpha_k=0
corresponds to a naive biased and unstable jackknife. They recommend \alpha_k=1
or \alpha_k>1
. If \alpha_k=1
, \hat{V}(\hat{t}_{Hajek})
reduces to the Escobar-Berger (2011) jackknife. Using \alpha_k>1
approximates the empirical influence function, i.e. the Gateaux (1919) derivative, or Demnati-Rao (2004) linearisation variance estimators. The larger the \alpha_k
, the closer the approximation. Further, Escobar-Berger (2013) give an intuitive explanation of the replication method from a jackknife and bootstrap perspective.
Value
The function returns a value for the estimated variance.
Author(s)
Emilio Lopez Escobar.
References
Demnati, A. and Rao, J. N. K. (2004) Linearization variance estimators for survey data. Survey Methodology, 30, 17–26.
Escobar, E. L. and Berger, Y. G. (2011) Jackknife variance estimation for functions of Horvitz-Thompson estimators under unequal probability sampling without replacement. In Proceeding of the 58th World Statistics Congress. Dublin, Ireland: International Statistical Institute.
Escobar, E. L. and Berger, Y. G. (2013) A new replicate variance estimator for unequal probability sampling without replacement. Canadian Journal of Statistics 41, 3, 508–524.
Gateaux, R. (1919) Fonctions d'une infinite de variables indeependantes. Bulletin de la Societe Mathematique de France, 47, 70–96.
Hajek, J. (1971) Comment on An essay on the logical foundations of survey sampling by Basu, D. in Foundations of Statistical Inference (Godambe, V.P. and Sprott, D.A. eds.), p. 236. Holt, Rinehart and Winston.
Horvitz, D. G. and Thompson, D. J. (1952) A generalization of sampling without replacement from a finite universe. Journal of the American Statistical Association, 47, 663–685.
See Also
VE.Jk.Tukey.Total.Hajek
VE.Jk.CBS.SYG.Total.Hajek
VE.Jk.B.Total.Hajek
VE.Jk.EB.SW2.Total.Hajek
VE.EB.SYG.Total.Hajek
Examples
data(oaxaca) #Loads the Oaxaca municipalities dataset
pik.U <- Pk.PropNorm.U(373, oaxaca$HOMES00) #Reconstructs the 1st order incl. probs.
s <- oaxaca$sHOMES00 #Defines the sample to be used
N <- dim(oaxaca)[1] #Defines the population size
y1 <- oaxaca$POP10 #Defines the variable of interest y1
y2 <- oaxaca$POPMAL10 #Defines the variable of interest y2
Alpha.s <- rep(2, times=373) #Defines the vector with Alpha values
#This approximation is only suitable for large-entropy sampling designs
pikl.s <- Pkl.Hajek.s(pik.U[s==1]) #Approx. 2nd order incl. probs. from s
#Computes the var. est. of the Hajek total point estimator using y1
VE.EB.HT.Total.Hajek(y1[s==1], pik.U[s==1], pikl.s, N)
#Computes the var. est. of the Hajek total point estimator using y2
VE.EB.HT.Total.Hajek(y2[s==1], pik.U[s==1], pikl.s, N, Alpha.s)