cluster.estimator {samplingR} | R Documentation |
Parameter estimation for cluster samples
Description
Estimates parameters with optional confidence interval for clustered data of similar cluster size.
Usage
cluster.estimator(
N,
data,
estimator = c("total", "mean", "proportion", "class total"),
replace = FALSE,
alpha
)
Arguments
N |
Number of clusters for the population |
data |
Cluster sample |
estimator |
Estimator to compute. Can be one of "total", "mean", "proportion", "class total". Default is "total". |
replace |
Whether the sample to be taken can have repeated instances or not. |
alpha |
Optional value to calculate estimation error and build 1-alpha |
Details
This function admits both grouped and non-grouped by cluster data.
Non-grouped data must have interest variable data in the first column and cluster
name each individual belongs to in the last column.
Grouped by cluster data must have interest variable data in the first column,
cluster size in the second and the cluster name in the last column. Interest
values of grouped data must reflect the total value of each cluster.
Value
A list containing different interest values:
estimator
variance
sampling.error
estimation.error
confint
Examples
d<-cbind(rnorm(500, 50, 20), rep(c(1:50),10)) #Non-grouped data
sample<-cluster.sample(d, n=10) #Non-grouped sample
sampleg<-aggregate(sample[,1], by=list(Category=sample[,2]), FUN=sum)
sampleg<-cbind(sampleg[,2], rep(10,10), sampleg[,1]) #Same sample but with grouped data
sum(d[,1])
cluster.estimator(N=50, data=sample, estimator="total", alpha=0.05)
cluster.estimator(N=50, data=sampleg, estimator="total", alpha=0.05)