| survival {samc} | R Documentation |
Calculate survival metrics
Description
Calculates the expected time to absorption
Usage
survival(samc, init, origin)
## S4 method for signature 'samc,missing,missing'
survival(samc)
## S4 method for signature 'samc,missing,location'
survival(samc, origin)
## S4 method for signature 'samc,ANY,missing'
survival(samc, init)
Arguments
samc |
A |
init |
Sets the initial state |
origin |
A positive integer or character name representing transient state
|
Details
z=(I-Q)^{-1}{\cdot}1=F{\cdot}1
-
survival(samc)
The result is a vector
\mathbf{v}where\mathbf{v}_iis the expected time to absorption if starting at transient state\mathit{i}.If the samc-class object was created using matrix or RasterLayer maps, then vector
\mathbf{v}can be mapped to a RasterLayer using themapfunction.
\psi^Tz
-
survival(samc, init)
The result is a numeric that is the expected time to absorption given an initial state
\psi.
Value
See Details
Performance
Any relevant performance information about this function can be found in the
performance vignette: vignette("performance", package = "samc")
Examples
# "Load" the data. In this case we are using data built into the package.
# In practice, users will likely load raster data using the raster() function
# from the raster package.
res_data <- samc::example_split_corridor$res
abs_data <- samc::example_split_corridor$abs
init_data <- samc::example_split_corridor$init
# Make sure our data meets the basic input requirements of the package using
# the check() function.
check(res_data, abs_data)
check(res_data, init_data)
# Setup the details for a random-walk model
rw_model <- list(fun = function(x) 1/mean(x), # Function for calculating transition probabilities
dir = 8, # Directions of the transitions. Either 4 or 8.
sym = TRUE) # Is the function symmetric?
# Create a `samc-class` object with the resistance and absorption data using
# the samc() function. We use the recipricol of the arithmetic mean for
# calculating the transition matrix. Note, the input data here are matrices,
# not RasterLayers.
samc_obj <- samc(res_data, abs_data, model = rw_model)
# Convert the initial state data to probabilities
init_prob_data <- init_data / sum(init_data, na.rm = TRUE)
# Calculate short- and long-term metrics using the analytical functions
short_mort <- mortality(samc_obj, init_prob_data, time = 50)
short_dist <- distribution(samc_obj, origin = 3, time = 50)
long_disp <- dispersal(samc_obj, init_prob_data)
visit <- visitation(samc_obj, dest = 4)
surv <- survival(samc_obj)
# Use the map() function to turn vector results into RasterLayer objects.
short_mort_map <- map(samc_obj, short_mort)
short_dist_map <- map(samc_obj, short_dist)
long_disp_map <- map(samc_obj, long_disp)
visit_map <- map(samc_obj, visit)
surv_map <- map(samc_obj, surv)