mspeNERlin {saeMSPE}R Documentation

Compute MSPE through linearization method for Nested error regression model

Description

This function returns MSPE estimator with linearization method for Nested error regression model. These include the seminal Prasad-Rao method and its generalizations by Datta-Lahiri. All these methods are developed for general linear mixed effects models.

Usage

mspeNERlin(ni, X, Y, X.mean, method = "PR", var.method = "default")

mspeNERPR(ni, X, Y, X.mean, var.method = "default")

mspeNERDL(ni, X, Y, X.mean, var.method = "default")

Arguments

ni

(vector). It represents the sample number for every small area.

X

(matrix). Stands for the available auxiliary values.

Y

(vector). It represents the response value for Nested error regression model.

X.mean

(matrix). Stands for the population mean of auxiliary values.

method

The MSPE estimation method to be used. See "Details".

var.method

The variance component estimation method to be used. See "Details".

Details

Default method for mspeNERlin is "PR" ,proposed by N. G. N. Prasad and J. N. K. Rao, Prasad-Rao (PR) method uses Taylor series expansion to obtain a second-order approximation to the MSPE. Function mspeNERlin also provide the following method:

Method "DL" advanced PR method to cover the cases when the variance components are estimated by ML and REML estimator. Set method = "DL".

For method = "PR", var.method = "MOM" is the only available variance component estimation method,

For method = "DL", var.method = "ML" or var.method = "REML" are available.

Value

This function returns a list with components:

MSPE

(vector) MSPE estimates for NER model.

bhat

(vector) Estimates of the unknown regression coefficients.

sigvhat2

(numeric) Estimates of the area-specific variance component.

sigehat2

(numeric) Estimates of the random error variance component.

Author(s)

Peiwen Xiao, Xiaohui Liu, Yuzi Liu, Jiming Jiang, and Shaochu Liu

References

N. G. N. Prasad and J. N. K. Rao. The estimation of the mean squared error of small-area estimators. Journal of the American Statistical Association, 85(409):163-171, 1990.

G. S. Datta and P. Lahiri. A unified measure of uncertainty of estimated best linear unbiased predictors in small area estimation problems. Statistica Sinica, 10(2):613-627, 2000.

Examples

### parameter setting 
Ni = 1000; sigmaX = 1.5; K = 100; C = 50; m = 10
beta = c(0.5, 1)
sigma_v2 = 0.8; sigma_e2 = 1
ni = sample(seq(1,10), m,replace = TRUE); n = sum(ni)
p = length(beta)
### population function
pop.model = function(Ni, sigmaX, beta, sigma_v2, sigma_e2, m){
  x = rnorm(m * Ni, 1, sqrt(sigmaX)); v = rnorm(m, 0, sqrt(sigma_v2)); y = numeric(m * Ni)
  theta = numeric(m); kk = 1
  for(i in 1 : m){
    sumx = 0
    for(j in 1:Ni){
      sumx = sumx + x[kk]
      y[kk] = beta[1] + beta[2] * x[kk] + v[i] + rnorm(1, 0, sqrt(sigma_e2))
      kk = kk + 1
    }
    meanx = sumx/Ni
    theta[i] = beta[1] + beta[2] * meanx + v[i]
  }
  group = rep(seq(m), each = Ni)
  x = cbind(rep(1, m*Ni), x)
  data = cbind(x, y, group)
  return(list(data = data, theta = theta))
} 
### sample function
sampleXY = function(Ni, ni, m, Population){
  Indx = c()
  for(i in 1:m){
    Indx = c(Indx, sample(c(((i - 1) * Ni + 1) : (i * Ni)), ni[i]))
  }
  Sample = Population[Indx, ]; Nonsample = Population[-Indx, ]
  return(list(Sample, Nonsample))
} 
### data generation process
Population = pop.model(Ni, sigmaX, beta, sigma_v2, sigma_e2, m)$data
XY = sampleXY(Ni, ni, m, Population)[[1]]
X = XY[, 1:p]
Y = XY[, p+1]
Xmean = matrix(NA, m, p)
for(tt in 1: m){
  Xmean[tt, ] = colMeans(Population[which(Population[,p+2] == tt), 1:p])
}
### mspe result
mspeNERlin(ni, X, Y, Xmean, method = "PR", var.method = "default")

[Package saeMSPE version 1.2 Index]