mse_FHme {saeME} | R Documentation |
Mean Squared Error Estimator of the EBLUP under a Fay-Herriot Model with Measurement Error
Description
This function gives the mean squared error estimator of the EBLUP based on Fay-Herriot model with measurement error using jackknife method.
Usage
mse_FHme(
formula,
vardir,
var.x,
type.x = "witherror",
MAXITER = 1000,
PRECISION = 1e-04,
data
)
Arguments
formula |
an object of class |
vardir |
vector containing the |
var.x |
vector containing mean squared error of |
type.x |
type of auxiliary variable used in the model. Either source measured with |
MAXITER |
maximum number of iterations allowed. Default value is |
PRECISION |
convergence tolerance limit. Default value is |
data |
optional data frame containing the variables named in formula, vardir, and var.x. |
Details
A formula has an implied intercept term. To remove this use either y ~ x - 1 or y ~ 0 + x. See formula
for more details of allowed formulae.
Value
The function returns a list with the following objects:
mse
vector with the values of the mean squared errors of the EBLUPs for each domain.
Examples
data(dataME)
data(datamix)
mse.sae.me <- mse_FHme(formula = y ~ x.hat, vardir = vardir, var.x = c("var.x"), data = dataME)
mse.sae.mix <- mse_FHme(formula = y ~ x.hat1 + x.hat2 + x3 + x4,
vardir = vardir, var.x = c("var.x1", "var.x2"), type.x = "mix", data = datamix)