| Poisson {saeHB} | R Documentation | 
Small Area Estimation using Hierarchical Bayesian under Poisson Distribution
Description
This function is implemented to variable of interest (y) that assumed to be a Poisson Distribution. The data is a count data, y = 1,2,3,...
Usage
Poisson(
  formula,
  iter.update = 3,
  iter.mcmc = 10000,
  coef,
  var.coef,
  thin = 2,
  burn.in = 2000,
  tau.u = 1,
  data
)
Arguments
| formula | Formula that describe the fitted model | 
| iter.update | Number of updates with default  | 
| iter.mcmc | Number of total iterations per chain with default  | 
| coef | a vector contains prior initial value of Coefficient of Regression Model for fixed effect with default vector of  | 
| var.coef | a vector contains prior initial value of variance of Coefficient of Regression Model with default vector of  | 
| thin | Thinning rate, must be a positive integer with default  | 
| burn.in | Number of iterations to discard at the beginning with default  | 
| tau.u | Prior initial value of inverse of Variance of area random effect with default  | 
| data | The data frame | 
Value
This function returns a list of the following objects:
| Est | A vector with the values of Small Area mean Estimates using Hierarchical bayesian method | 
| refVar | Estimated random effect variances | 
| coefficient | A dataframe with the estimated model coefficient | 
| plot | Trace, Dencity, Autocorrelation Function Plot of MCMC samples | 
Author(s)
Azka Ubaidillah [aut], Ika Yuni Wulansari [aut], Zaza Yuda Perwira [aut, cre], Jayanti Wulansari [aut, cre], Fauzan Rais Arfizain [aut,cre]
Examples
##Load Dataset
library(CARBayesdata)
data(lipdata)
dataPoisson <- lipdata
dataPoissonNs <- lipdata
dataPoissonNs$observed[c(2,9,15,23,40)] <- NA
##Compute Fitted Model
#observed ~ pcaff
## For data without any nonsampled area
formula = observed ~ pcaff
v = c(1,1)
c = c(0,0)
## Using parameter coef and var.coef
saeHBPoisson <- Poisson(formula, coef=c,var.coef=v,iter.update=10,data=dataPoisson)
saeHBPoisson$Est                                 #Small Area mean Estimates
saeHBPoisson$refVar                              #Random effect variance
saeHBPoisson$coefficient                         #coefficient
#Load Library 'coda' to execute the plot
#autocorr.plot(saeHBPoisson$plot[[3]]) is used to generate ACF Plot
#plot(saeHBPoisson$plot[[3]]) is used to generate Density and trace plot
## Do not using parameter coef and var.coef
saeHBPoisson <- Poisson(formula,data=dataPoisson)
## For data with nonsampled area use dataPoissonNs