Gamma {saeHB} | R Documentation |
Small Area Estimation using Hierarchical Bayesian under Gamma Distribution
Description
This function is implemented to variable of interest (y)
that assumed to be a Gamma Distribution. The range of data is ( y > 0)
Usage
Gamma(
formula,
iter.update = 3,
iter.mcmc = 10000,
coef,
var.coef,
thin = 2,
burn.in = 2000,
tau.u = 1,
data
)
Arguments
formula |
Formula that describe the fitted model |
iter.update |
Number of updates with default |
iter.mcmc |
Number of total iterations per chain with default |
coef |
a vector contains prior initial value of Coefficient of Regression Model for fixed effect with default vector of |
var.coef |
a vector contains prior initial value of variance of Coefficient of Regression Model with default vector of |
thin |
Thinning rate, must be a positive integer with default |
burn.in |
Number of iterations to discard at the beginning with default |
tau.u |
Prior initial value of inverse of Variance of area random effect with default |
data |
The data frame |
Value
This function returns a list of the following objects:
Est |
A vector with the values of Small Area mean Estimates using Hierarchical bayesian method |
refVar |
Estimated random effect variances |
coefficient |
A dataframe with the estimated model coefficient |
plot |
Trace, Dencity, Autocorrelation Function Plot of MCMC samples |
Examples
##Data Generation
set.seed(123)
m=30
x1=runif(m,0,1)
x2=runif(m,0,1)
b0=b1=b2=0.5
u=rnorm(m,0,1)
phi=rgamma(m,0.5,0.5)
vardir=1/phi
mu= exp(b0 + b1*x1+b2*x2+u)
A=mu^2*phi
B=mu*phi
y=rgamma(m,A,B)
dataGamma=as.data.frame(cbind(y,x1,x2,vardir))
dataGammaNs <- dataGamma
dataGammaNs$y[c(3,14,22,29,30)] <- NA
dataGammaNs$vardir[c(3,14,22,29,30)] <- NA
##Compute Fitted Model
##y ~ x1 +x2
## For data without any nonsampled area
#formula = y ~ x1 +x2
v = c(1,1,1)
c = c(0,0,0)
## Using parameter coef and var.coef
saeHBGamma <- Gamma(formula,coef=c,var.coef=v,iter.update=10,data =dataGamma)
saeHBGamma$Est #Small Area mean Estimates
saeHBGamma$refVar #Random effect variance
saeHBGamma$coefficient #coefficient
#Load Library 'coda' to execute the plot
#autocorr.plot(saeHBGamma$plot[[3]]) is used to generate ACF Plot
#plot(saeHBGamma$plot[[3]]) is used to generate Density and trace plot
## Do not using parameter coef and var.coef
saeHBGamma <- Gamma(formula, data = dataGamma)#'
## For data with nonsampled area use dataGammaNs