| dataPanelbeta {saeHB.panel.beta} | R Documentation |
Sample Data under Beta Distribution for Small Area Estimation using Hierarchical Bayesian Method for Rao Yu Model when rho = 0
Description
Dataset under Beta Distribution to simulate Small Area Estimation using Hierarchical Bayesian Method for Rao-Yu Model with rho = 0 This data is generated by these following steps:
Generate random effect area
v, random effect for area i at time point ju, epsilon\epsilon, variance of ydivardir, sampling errore, auxiliaryxdi1andxdi2Set coefficient
\beta_{0}=\beta_{1}=\beta_{2}=2Generate random effect area
v_{i}~N(0,1)Generate auxiliary variable
xdi1_{ij}~U(0,1)Generate auxiliary variable
xdi2_{ij}~U(0,1)Generate epsilon
\epsilon_{ij}~N(0,1)Generate
\phi_{ij}~Gamma(1,0.5)Calculate
\mu_{ij}=\frac{\exp{\beta_{0}+\beta_{1}xdi1_{ij}+\beta_{2}xdi2_{ij}+v_{i}+\epsilon_{ij}}}{(1+\exp{\beta_{0}+\beta_{1}xdi1_{ij}+\beta_{2}xdi2_{ij}+v_{i}+\epsilon_{ij}})}Calculate
A_{ij}=\mu_{ij}*\phi_{ij}Calculate
B_{ij}=(1-\mu_{ij})*\phi_{ij}Generate ydi
y_{ij}~Beta(A_{ij},B_{ij})Calculate variance of ydi with
vardir_{ij}=\frac{(A_{ij})(B_{ij})}{(A_{ij}+B_{ij})^2(A_{ij}+B_{ij}+1)}Set
area=20andperiod=5
Auxiliary variables
xdi1,xdi2, direct estimationy,area,period, andvardirare combined in a dataframe calleddataPanel
Usage
dataPanelbeta
Format
A data frame with 100 rows and 6 variables:
- ydi
Direct Estimation of y
- area
Area (domain) of the data
- period
Period (subdomain) of the data
- vardir
Sampling Variance of y
- xdi1
Auxiliary variable of xdi1
- xdi2
Auxiliary variable of xdi2