Panel.beta {saeHB.panel.beta} | R Documentation |
Small Area Estimation using Hierarchical Bayesian for Rao-Yu Model under Beta Distribution with rho=0
Description
This function is implemented to variable of interest ydi
Usage
Panel.beta(
formula,
area,
period,
iter.update = 3,
iter.mcmc = 2000,
thin = 1,
burn.in = 1000,
tau.e = 1,
tau.v = 1,
data
)
Arguments
formula |
Formula that describe the fitted model |
area |
Number of areas (domain) of the data |
period |
Number of periods (subdomains) for each area of the data |
iter.update |
Number of updates with default |
iter.mcmc |
Number of total iterations per chain with default |
thin |
Thinning rate, must be a positive integer with default |
burn.in |
Number of iterations to discard at the beginning with default |
tau.e |
Variance of area-by-time effect of variable interest with default |
tau.v |
Variance of random area effect of variable interest with default |
data |
The data frame |
Value
This function returns a list of the following objects:
Est |
A vector with the values of Small Area mean Estimates using Hierarchical bayesian method |
refVar |
Estimated random effect variances |
coef |
A dataframe with the estimated model coefficient |
plot |
Trace, Density, Autocorrelation Function Plot of MCMC samples |
convergence.test |
Convergence diagnostic for Markov chains based on Geweke test |
Examples
##For data without any non-sampled area
data(dataPanelbeta) # Load dataset
dataPanelbeta = dataPanelbeta[1:25,] #for the example only use part of the dataset
formula = ydi ~ xdi1 + xdi2
area = max(dataPanelbeta[, "area"])
period = max(dataPanelbeta[,"period"])
result <- Panel.beta(formula, area, period, data = dataPanelbeta)
result$Est
result$refVar
result$coef
result$plot
result$convergence.test
## For data with non-sampled area use dataPanelbetaNs