dataZIB {saeHB.ZIB} | R Documentation |
Sample Data for Small Area Estimation using Hierarchical Bayesian Method under Zero-Inflated Binomial Distribution
Description
Dataset to simulate Small Area Estimation using Hierarchical Bayesian Method under Zero-Inflated Binomial distribution
This data is generated by these following steps:
Generate sampling random area effect u.Z and u.nZ with
(u.Z ~ N(0,1))
and(u.nZ ~ N(0,1))
. The auxilary variabels are generated by Uniform distribution with(x1 ~ U(0,1))
and(x2 ~ U(1,5))
. The coefficient parameters\alpha0, \alpha1, \alpha2, \beta0, \beta1, \beta2
are set as 0.Calculate
logit(p)=\alpha0 + \alpha1 * x1+ \alpha2 * x2 + u.Z
andlogit(\pi)=\beta0 + \beta1 * x1 +\beta2 * x2 + u.nZ
Generate number of sample with
n.samp ~ U(10,30)
Generate
delta ~ bernoulli(p)
andy_star ~ binomial(s, \pi)
calculate
y = delta*y_star
Calculate variance of direct estimates (vardir) with
var (y) = (1-p)*s*pi*(1-\pi*(1-p*s))
Auxilary variables x1, x2, direct estimation
(y)
, vardir, and s are combined in a dataframe called dataZIB
Usage
data(dataZIB)
Format
A data frame with 64 observations on the following 4 variables:
- y
Direct Estimation of y
- X1
Auxiliary variable of x1
- X2
Auxiliary variable of x2
- vardir
sampling variance of y
- s
number of sample