dataZIB {saeHB.ZIB}R Documentation

Sample Data for Small Area Estimation using Hierarchical Bayesian Method under Zero-Inflated Binomial Distribution

Description

Dataset to simulate Small Area Estimation using Hierarchical Bayesian Method under Zero-Inflated Binomial distribution

This data is generated by these following steps:

  1. Generate sampling random area effect u.Z and u.nZ with (u.Z N(0,1))(u.Z ~ N(0,1)) and (u.nZ N(0,1))(u.nZ ~ N(0,1)). The auxilary variabels are generated by Uniform distribution with (x1 U(0,1))(x1 ~ U(0,1)) and (x2 U(1,5))(x2 ~ U(1,5)). The coefficient parameters α0,α1,α2,β0,β1,β2\alpha0, \alpha1, \alpha2, \beta0, \beta1, \beta2 are set as 0.

  2. Calculate logit(p)=α0+α1x1+α2x2+u.Zlogit(p)=\alpha0 + \alpha1 * x1+ \alpha2 * x2 + u.Z and logit(π)=β0+β1x1+β2x2+u.nZlogit(\pi)=\beta0 + \beta1 * x1 +\beta2 * x2 + u.nZ

  3. Generate number of sample with n.samp U(10,30)n.samp ~ U(10,30)

  4. Generate delta bernoulli(p)delta ~ bernoulli(p) and ystar binomial(s,π)y_star ~ binomial(s, \pi)

  5. calculate y=deltaystary = delta*y_star

  6. Calculate variance of direct estimates (vardir) with var(y)=(1p)spi(1π(1ps))var (y) = (1-p)*s*pi*(1-\pi*(1-p*s))

  7. Auxilary variables x1, x2, direct estimation (y)(y), vardir, and s are combined in a dataframe called dataZIB

Usage

data(dataZIB)

Format

A data frame with 64 observations on the following 4 variables:

y

Direct Estimation of y

X1

Auxiliary variable of x1

X2

Auxiliary variable of x2

vardir

sampling variance of y

s

number of sample


[Package saeHB.ZIB version 0.1.1 Index]