| dataHBMEbeta {saeHB.ME.beta} | R Documentation |
Sample Data for Small Area Estimation with Measurement Error using Hierarchical Bayesian Method under Beta Distribution
Description
This data generated by simulation based on Hierarchical Bayesian Method under Normal Distribution with Measurement Error by following these steps:
Generate
x_{1}~ UNIF(0, 1),x_{2}~ UNIF(0, 1),x_{3}~ UNIF(0, 1), andx_{4}~ UNIF(0, 1)Generate
v.x_{1}~ Gamma(2,1) andv.x_{2}~ Gamma(2,5)Generate
x_{1h}~ N(x_{1}, sqrt(v.x_{1})) andx_{2h}~ N(x_{2}, sqrt(v.x_{2}))Set Coefficient
\beta_{0}=\beta_{1}=\beta_{2}=\beta_{3}=\beta_{4}={0,5}Generate
u~ N(0,1) and\pi~ Gamma(1,0.5)Calculate
{\mu} =\frac{\beta_{0} + \beta_{1}*x_{1h} + \beta_{2}*x_{2h} + \beta_{3}*x_{3} + \beta_{4}*x_{4} + u}{\beta0 + \beta1*x1h + \beta2*x2h + \beta3*x3 + \beta4*x4 + u}Calculate
A=\mu\piandB= (1-\mu)\piGenerate
Y~ UNIF(A,B)Calculate Mean of Variable Y with
{E(Y)}=\frac{A}{A+B}Calculate Variance of Variable Y with
{Var(Y)} = \frac{AB}{ (A+B+1)(A+B)^2}
Direct estimation Y, auxiliary variables x1 x2 x3 x4, sampling variance v, and mean squared error of auxiliary variables v.x1 v.x2 are arranged in a dataframe called dataHBMEbeta.
Usage
data(dataHBMEbeta)
Format
A data frame with 30 rows and 8 variables:
Ydirect estimation of Y.
x1auxiliary variable of x1.
x2auxiliary variable of x2.
x3auxiliary variable of x3.
x4auxiliary variable of x4.
vardirsampling variances of Y.
v.x1mean squared error of x1.
v.x2mean squared error of x2.