dataHBMEbeta {saeHB.ME.beta}R Documentation

Sample Data for Small Area Estimation with Measurement Error using Hierarchical Bayesian Method under Beta Distribution

Description

This data generated by simulation based on Hierarchical Bayesian Method under Normal Distribution with Measurement Error by following these steps:

  1. Generate x1x_{1} ~ UNIF(0, 1), x2x_{2} ~ UNIF(0, 1), x3x_{3} ~ UNIF(0, 1), and x4x_{4} ~ UNIF(0, 1)

  2. Generate v.x1v.x_{1} ~ Gamma(2,1) and v.x2v.x_{2} ~ Gamma(2,5)

  3. Generate x1hx_{1h} ~ N(x1x_{1}, sqrt(v.x1v.x_{1})) and x2hx_{2h} ~ N(x2x_{2}, sqrt(v.x2v.x_{2}))

  4. Set Coefficient β0\beta_{0} = β1\beta_{1} = β2\beta_{2} = β3\beta_{3} = β4\beta_{4} = 0,5{0,5}

  5. Generate uu ~ N(0,1) and π\pi ~ Gamma(1,0.5)

  6. Calculate

    μ=β0+β1x1h+β2x2h+β3x3+β4x4+uβ0+β1x1h+β2x2h+β3x3+β4x4+u{\mu} =\frac{\beta_{0} + \beta_{1}*x_{1h} + \beta_{2}*x_{2h} + \beta_{3}*x_{3} + \beta_{4}*x_{4} + u}{\beta0 + \beta1*x1h + \beta2*x2h + \beta3*x3 + \beta4*x4 + u}

  7. Calculate AA = μ\muπ\pi and BB = (1-μ\mu)π\pi

  8. Generate YY ~ UNIF(A,B)

  9. Calculate Mean of Variable Y with

    E(Y)=AA+B{E(Y)}=\frac{A}{A+B}

  10. Calculate Variance of Variable Y with

    Var(Y)=AB(A+B+1)(A+B)2{Var(Y)} = \frac{AB}{ (A+B+1)(A+B)^2}

Direct estimation Y, auxiliary variables x1 x2 x3 x4, sampling variance v, and mean squared error of auxiliary variables v.x1 v.x2 are arranged in a dataframe called dataHBMEbeta.

Usage

data(dataHBMEbeta)

Format

A data frame with 30 rows and 8 variables:

Y

direct estimation of Y.

x1

auxiliary variable of x1.

x2

auxiliary variable of x2.

x3

auxiliary variable of x3.

x4

auxiliary variable of x4.

vardir

sampling variances of Y.

v.x1

mean squared error of x1.

v.x2

mean squared error of x2.


[Package saeHB.ME.beta version 1.1.0 Index]