mseSFH {sae} | R Documentation |
Mean squared error estimator of the spatial EBLUP under a spatial Fay-Herriot model.
Description
Calculates analytical mean squared error estimates of the spatial EBLUPs obtained from the fit of a spatial Fay-Herriot model, in which area effects follow a Simultaneously Autorregressive (SAR) process.
Usage
mseSFH(formula, vardir, proxmat, method = "REML", MAXITER = 100,
PRECISION = 0.0001, data)
Arguments
formula |
an object of class |
vardir |
vector containing the |
proxmat |
|
method |
type of fitting method, to be chosen between |
MAXITER |
maximum number of iterations allowed for the Fisher-scoring algorithm. Default value is |
PRECISION |
convergence tolerance limit for the Fisher-scoring algorithm. Default value is |
data |
optional data frame containing the variables named in |
Value
The function returns a list with the following objects:
est |
a list with the results of the estimation process: |
mse |
a vector with the analytical mean squared error estimates of the spatial EBLUPs. |
In case that formula
, vardir
or proxmat
contain NA values a message is printed and no action is done.
Author(s)
Isabel Molina, Monica Pratesi and Nicola Salvati.
References
- Small Area Methods for Poverty and Living Conditions Estimates (SAMPLE), funded by European Commission, Collaborative Project 217565, Call identifier FP7-SSH-2007-1.
- Molina, I., Salvati, N. and Pratesi, M. (2009). Bootstrap for estimating the MSE of the Spatial EBLUP. Computational Statistics 24, 441-458.
- Singh, B., Shukla, G. and Kundu, D. (2005). Spatio-temporal models in small area estimation. Survey Methodology 31, 183-195.
See Also
Examples
data(grapes) # Load data set
data(grapesprox) # Load proximity matrix
# Calculate analytical MSE estimates using REML method
result <- mseSFH(grapehect ~ area + workdays - 1, var, grapesprox, data=grapes)
result