saeFH.ns.mprop {sae.prop} | R Documentation |
EBLUPs based on a Multivariate Fay Herriot model with Additive Logistic Transformation for Non-Sampled Data
Description
This function gives the transformed EBLUP based on a multivariate Fay-Herriot model. Random effects for sampled domains are from the fitted model and random effects for non-sampled domains are from cluster information. This function is used for multinomial compositional data. If data has P
as proportion and total of q
categories (P_{1} + P_{2} + \dots + P_{q} = 1)
, then function should be used to estimate {P_{1}, P_{2}, \dots, P_{q-1}}
.
Usage
saeFH.ns.mprop(
formula,
vardir,
MAXITER = 100,
PRECISION = 1e-04,
cluster = "auto",
data
)
Arguments
formula |
an object of class |
vardir |
sampling variances of direct estimations. If data is defined, it is a vector containing names of sampling variance columns. If data is not defined, it should be a data frame of sampling variances of direct estimators. The order is |
MAXITER |
maximum number of iterations allowed in the Fisher-scoring algorithm, Default: |
PRECISION |
convergence tolerance limit for the Fisher-scoring algorithm, Default: |
cluster |
Default: |
data |
optional data frame containing the variables named in |
Value
The function returns a list with the following objects:
est |
a data frame containing values of the estimators for each domains. |
-
PC
: transformed EBLUP estimators using inverse alr for each categoory. -
status
: status of corresponding domain, whether sampled or non-sampled.
fit |
a list containing the following objects (model is fitted using REML): |
-
convergence
: a logical value equal toTRUE
if Fisher-scoring algorithm converges in less thanMAXITER
iterations. -
iterations
: number of iterations performed by the Fisher-scoring algorithm. -
estcoef
: a data frame that contains the estimated model coefficients, standard errors, t-statistics, and p-values of each coefficient. -
refvar
: estimated covariance matrix of random effects. -
cluster
: cluster of each category. -
cluster.information
: a list containing data frames with average random effects of sampled domain in each cluster.
components |
a list containing the following objects: |
-
random.effects
: data frame containing estimated random effect values of the fitted model for each category and their status whether sampled or non-sampled. -
residuals
: data frame containing residuals of the fitted model for each category and their status whether sampled or non-sampled.
Examples
## Not run:
## Load dataset
data(datasaem.ns)
## If data is defined
Fo = list(Y1 ~ X1,
Y2 ~ X2,
Y3 ~ X3)
vardir = c("v1", "v2", "v3", "v12", "v13", "v23")
model.ns <- saeFH.ns.mprop(Fo, vardir, data = datasaem.ns)
## If data is undefined (and option for cluster arguments)
Fo = list(datasaem.ns$Y1 ~ datasaem.ns$X1,
datasaem.ns$Y2 ~ datasaem.ns$X2,
datasaem.ns$Y3 ~ datasaem.ns$X3)
vardir = datasaem.ns[, c("v1", "v2", "v3", "v12", "v13", "v23")]
### "auto"
model.ns1 <- saeFH.ns.mprop(Fo, vardir, cluster = "auto")
### number of clusters
model.ns2 <- saeFH.ns.mprop(Fo, vardir, cluster = c(3, 2, 2))
### data frame or matrix containing cluster for each domain
model.ns3 <- saeFH.ns.mprop(Fo, vardir, cluster = datasaem.ns[, c("c1", "c2", "c3")])
## See the estimators
model.ns$est
## End(Not run)