saeFH.mprop {sae.prop} | R Documentation |
EBLUPs based on a Multivariate Fay Herriot model with Additive Logistic Transformation
Description
This function gives the transformed EBLUP and Empirical Best Predictor (EBP) based on a multivariate Fay-Herriot model. This function is used for multinomial compositional data. If data has P
as proportion and total of q
categories (P_{1} + P_{2} + \dots + P_{q} = 1)
, then function should be used to estimate {P_{1}, P_{2}, \dots, P_{q-1}}
.
Usage
saeFH.mprop(formula, vardir, MAXITER = 100, PRECISION = 1e-04, L = 1000, data)
Arguments
formula |
an object of class |
vardir |
sampling variances of direct estimations. If data is defined, it is a vector containing names of sampling variance columns. If data is not defined, it should be a data frame of sampling variances of direct estimators. The order is |
MAXITER |
maximum number of iterations allowed in the Fisher-scoring algorithm, Default: |
PRECISION |
convergence tolerance limit for the Fisher-scoring algorithm, Default: |
L |
number of Monte Carlo iterations in calculating Empirical Best Predictor (EBP), Default: |
data |
optional data frame containing the variables named in |
Value
The function returns a list with the following objects:
est |
a list containing data frame of the estimators for each domains. |
-
PC
: transformed EBLUP estimators using inverse alr for each category. -
EBP
: Empirical Best Predictor using Monte Carlo for each category.
fit |
a list containing the following objects (model is fitted using REML): |
-
convergence
: a logical value equal toTRUE
if Fisher-scoring algorithm converges in less thanMAXITER
iterations. -
iterations
: number of iterations performed by the Fisher-scoring algorithm. -
estcoef
: a data frame that contains the estimated model coefficients, standard errors, t-statistics, and p-values of each coefficient. -
refvar
: estimated covariance matrix of random effects.
components |
a list containing the following objects: |
-
random.effects
: data frame containing estimated random effect values of the fitted model for each category. -
residuals
: data frame containing residuals of the fitted model for each category.
Examples
## Not run:
## Load dataset
data(datasaem)
## If data is defined
Fo = list(Y1 ~ X1,
Y2 ~ X2,
Y3 ~ X3)
vardir = c("v1", "v2", "v3", "v12", "v13", "v23")
model.data <- saeFH.mprop(Fo, vardir, data = datasaem)
Fo = list(datasaem$Y1 ~ datasaem$X1,
datasaem$Y2 ~ datasaem$X2,
datasaem$Y3 ~ datasaem$X3)
vardir = datasaem[, c("v1", "v2", "v3", "v12", "v13", "v23")]
model <- saeFH.mprop(Fo, vardir)
## See the estimators
model$est
## End(Not run)