mseFH.ns.uprop {sae.prop} | R Documentation |
Parametric Bootstrap Mean Squared Error of EBLUPs based on a Univariate Fay Herriot model with Additive Logistic Transformation for Non-Sampled Data
Description
This function gives the MSE of transformed EBLUP based on a univariate Fay-Herriot model. For sampled domains, MSE is estimated using modified parametric bootstrap approach proposed by Butar & Lahiri. For non-sampled domains, MSE is estimated using modified approach proposed by Haris & Ubaidillah.
Usage
mseFH.ns.uprop(
formula,
vardir,
MAXITER = 100,
PRECISION = 1e-04,
cluster = "auto",
B = 1000,
data
)
Arguments
formula |
an object of class |
vardir |
vector containing the sampling variances of direct estimators for each domain. The values must be sorted as the variables in |
MAXITER |
maximum number of iterations allowed in the Fisher-scoring algorithm, Default: |
PRECISION |
convergence tolerance limit for the Fisher-scoring algorithm, Default: |
cluster |
Default: |
B |
number of Bootstrap iterations in calculating MSE, Default: |
data |
optional data frame containing the variables named in |
Value
The function returns a list with the following objects:
est |
a data frame containing values of the estimators for each domains. |
-
PC
: transformed EBLUP estimators using inverse alr. -
status
: status of corresponding domain, whether sampled or non-sampled. -
cluster
: cluster of corresponding domain.
fit |
a list containing the following objects (model is fitted using REML): |
-
convergence
: a logical value equal toTRUE
if Fisher-scoring algorithm converges in less thanMAXITER
iterations. -
iterations
: number of iterations performed by the Fisher-scoring algorithm. -
estcoef
: a data frame that contains the estimated model coefficients, standard errors, t-statistics, and p-values of each coefficient. -
refvar
: estimated random effects variance. -
cluster.information
: a data frame containing average random effects of sampled domain in each cluster.
components |
a data frame containing the following columns: |
-
random.effects
: estimated random effect values of the fitted model. -
residuals
: residuals of the fitted model. -
status
: status of corresponding domain, whether sampled or non-sampled.
mse |
a data frame containing estimated MSE of the estimators. |
-
PC
: estimated MSE of plugin (PC) estimators. -
status
: status of domain, whether sampled or non-sampled.
Examples
## Not run:
## Load dataset
data(datasaeu.ns)
## If data is defined
Fo = y ~ x1 + x2
vardir = "vardir"
MSE.ns <- mseFH.ns.uprop(Fo, vardir, data = datasaeu.ns)
## If data is undefined (and option for cluster arguments)
Fo = datasaeu.ns$y ~ datasaeu.ns$x1 + datasaeu.ns$x2
vardir = datasaeu.ns$vardir
### "auto"
MSE.ns1 <- mseFH.ns.uprop(Fo, vardir, cluster = "auto")
### number of clusters
MSE.ns2 <- mseFH.ns.uprop(Fo, vardir, cluster = 2)
### vector containing cluster for each domain
MSE.ns3 <- mseFH.ns.uprop(Fo, vardir, cluster = datasaeu.ns$cluster)
## See the estimators
MSE.ns$mse
## End(Not run)