datasaem {sae.prop} | R Documentation |
Data generated based on Multivariate Fay Herriot Model with Additive Logistic Transformation
Description
This data is generated based on multivariate Fay-Herriot model and then transformed by using inverse Additive Logistic Transformation (alr). The steps are as follows:
Set these following variables:
-
q=4
-
r1=r2=r3=2,r=6
-
β1=(β11,β12)′=(1,1)′,β2=(β21,β22)′=(1,1)′,β3=(β31,β32)′=(1,1)′
-
μx1=μx2=μx3
and σx11=1,σx22=3/2,σx33=2
for k=1,2,…,q−1
and d=1,…,D
, generate Xd=diag(xd1,xd2,xd3)(q−1)×r
, where:
-
xd1=(xd11,xd11)
-
xd1=(xd21,xd22)
-
xd1=(xd31,xd31)
-
xd11=xd21=xd31=1
-
Udk∼U(0,1)
-
xd12=μx1+σx111/2Ud1
-
xd22=μx2+σx221/2Ud2
-
xd32=μx3+σx331/2Ud3
For random effects u
, ud∼Nq−1(0,Vud)
, where θ1=1,θ2=3/2,θ3=2,θ4=−1/2,θ5=−1/2,θ6=0
For sampling errors e
, ed∼Nq−1(0,Ved)
, where c=−1/4
The generated data is transformed using inverse alr transformation, so the data will be within the range of proportion.
Auxiliary variables X1,X2,X3
, direct estimation Y1,Y2,Y3
, and sampling variance-covariance v1,v2,v3,v12,v13,v23
are combined into a data frame called datasaem. For more details about the structure of covariance matrix, it is available in supplementary materials of Reference.
Usage
datasaem
Format
A data frame with 30 rows and 12 columns:
- Y1
Direct Estimation of Y1
- Y2
Direct Estimation of Y2
- Y3
Direct Estimation of Y3
- X1
Auxiliary variable of X1
- X2
Auxiliary variable of X2
- X3
Auxiliary variable of X3
- v1
Sampling Variance of Y1
- v2
Sampling Variance of Y2
- v3
Sampling Variance of Y3
- v12
Sampling Covariance of Y1 and Y2
- v13
Sampling Covariance of Y1 and Y3
- v23
Sampling Covariance of Y2 and Y3
Reference
Esteban, M. D., Lombardía, M. J., López-Vizcaíno, E., Morales, D., & Pérez, A. (2020). Small area estimation of proportions under area-level compositional mixed models. Test, 29(3), 793–818. https://doi.org/10.1007/s11749-019-00688-w.
[Package
sae.prop version 0.1.2
Index]