dneta {sadists} | R Documentation |
The doubly non-central Eta distribution.
Description
Density, distribution function, quantile function and random generation for the doubly non-central Eta distribution.
Usage
ddneta(x, df, ncp1, ncp2, log = FALSE, order.max=6)
pdneta(q, df, ncp1, ncp2, lower.tail = TRUE, log.p = FALSE, order.max=6)
qdneta(p, df, ncp1, ncp2, lower.tail = TRUE, log.p = FALSE, order.max=6)
rdneta(n, df, ncp1, ncp2)
Arguments
x , q |
vector of quantiles. |
df |
the degrees of freedom for the denominator chi square.
We do not recycle this versus the |
ncp1 , ncp2 |
the non-centrality parameters for the numerator and denominator.
We do not recycle these versus the |
log |
logical; if TRUE, densities |
order.max |
the order to use in the approximate density, distribution, and quantile computations, via the Gram-Charlier, Edeworth, or Cornish-Fisher expansion. |
p |
vector of probabilities. |
n |
number of observations. |
log.p |
logical; if TRUE, probabilities p are given
as |
lower.tail |
logical; if TRUE (default), probabilities are
|
Details
Suppose Z
is a normal with mean \delta_1
,
and standard deviation 1, independent of
X \sim \chi^2\left(\delta_2,\nu_2\right)
,
a non-central chi-square with \nu_2
degrees of freedom
and non-centrality parameter \delta_2
. Then
Y = \frac{Z}{\sqrt{Z^2 + X}}
takes a doubly non-central Eta distribution with
\nu_2
degrees of freedom and non-centrality parameters
\delta_1,\delta_2
. The square of
a doubly non-central Eta is a doubly non-central Beta variate.
Value
ddneta
gives the density, pdneta
gives the
distribution function, qdneta
gives the quantile function,
and rdneta
generates random deviates.
Invalid arguments will result in return value NaN
with a warning.
Note
The PDF, CDF, and quantile function are approximated, via the Edgeworth or Cornish Fisher approximations, which may not be terribly accurate in the tails of the distribution. You are warned.
The distribution parameters are not recycled
with respect to the x, p, q
or n
parameters,
for, respectively, the density, distribution, quantile
and generation functions. This is for simplicity of
implementation and performance. It is, however, in contrast
to the usual R idiom for dpqr functions.
Author(s)
Steven E. Pav shabbychef@gmail.com
See Also
(doubly non-central) t distribution functions,
ddnt, pdnt, qdnt, rdnt
.
(doubly non-central) Beta distribution functions,
ddnbeta, pdnbeta, qdnbeta, rdnbeta
.
Examples
rv <- rdneta(500, df=100,ncp1=1.5,ncp2=12)
d1 <- ddneta(rv, df=100,ncp1=1.5,ncp2=12)
plot(rv,d1)
p1 <- ddneta(rv, df=100,ncp1=1.5,ncp2=12)
# should be nearly uniform:
plot(ecdf(p1))
q1 <- qdneta(ppoints(length(rv)), df=100,ncp1=1.5,ncp2=12)
qqplot(x=rv,y=q1)