plots {sac} | R Documentation |
Visualized Model Diagnostic and Loglikelihood Plot
Description
Plot and compare the empirical likelihood and semiparametric empirical likelihood distribution functions, plot loglikelihood function.
Usage
Graf.Diagnostic(x, k, m, Alpha, Beta, Color, LTY, xlab = "x",
ylab = "Estimated DF's", main = "Model Diagnostic",
OneLegend = TRUE, lgnd1, lgnd2, arw1, arw2, ...)
Plot.ll(x, ll, col, xaxis.lab = NULL, xlab = "k", ylab = "Loglikelihood",
main = "Plot of Loglikelihood",...)
Arguments
x |
a numeric vector or matrix containing the data, one row per observation; |
ll |
loglikelihood function, output of |
col |
color code or character string for the loglikelihood curve |
xaxis.lab |
a vector of character strings or numeric values to be placed at
the tickpoints as |
k |
the estimated change-point, output of |
m |
= |
Alpha |
estimated parameter |
Beta |
estimated parameter |
Color |
a vector of character strings or color codes for
curves of estimated distribution functions |
LTY |
vector of lty's, LTY=c(lty1, lty2, lty3, lty4), corresponds to the above color codes |
xlab |
character string for x-axis lable |
ylab |
character string for y-axis lable |
main |
character string for main title |
OneLegend |
a logical indicating whether plot one or two legend. |
lgnd1 |
a numeric vector of two specify the position of the first legend box |
lgnd2 |
a numeric vector of two specify the position of the second legend box,
if |
arw1 |
a numeric vector of four numbers indicating start and end positions of the first arrows point to curves |
arw2 |
a numeric vector of four numbers indicating start and end positions of the second arrows point to curves |
... |
other arguments of function |
Author(s)
Zhong Guan zguan@iusb.edu
References
Guan, Z.(2001) Some Results About Empirical Likelihood Method, Ph.D. Thesis, The University of Toledo;
Guan, Z.(2004) A semiparametric change-point model, Biometrika, 91, 4, 849–862.
Guan, Z. Semiparametric Tests for Changepoints with Epidemic Alternatives.
See Also
Examples
require(sac) #load the package
k<-30
n<-80
x<-rnorm(n,0,1)
x[(k+1):n]<-x[(k+1):n]+1.5
res<-SemiparChangePoint(x, alternative = "one.change")
Plot.ll(x, res$ll, col="blue")
## Nile data with one change-point: the annual flows drop in 1898 which corresponds
## to k=28. It is believed to be caused by the building of the first Aswan dam.
if(! "package:sac" %in% search()) library(sac)
#if package sac has not been loaded, load it.
if(! "package:stats" %in% search()) library(stats)
data(Nile)
plot(Nile, type="p")
Nile.res<-SemiparChangePoint(Nile, alternative = "one.change")
Color<-c(1,2,3,4); LTY<-c(1,2,3,4)
## Plots of estimated distribution functions
Graf.Diagnostic(Nile, Nile.res$k.hat, length(Nile), Nile.res$alpha.hat,
Nile.res$beta.hat, Color, LTY, xlab = "x", ylab = "Estimated DF's",
main="Model Diagnostic for Nile Data", OneLegend = FALSE, lgnd1 =
c(1100, 0.15), lgnd2 = c(600, .99), arw1=c(780, .93, 1010, .9),
arw2 = c(1165, .15, 1015, .24))
## Plot of loglikelihood function
Plot.ll(Nile, Nile.res$ll, col = "blue")
Plot.ll(Nile, Nile.res$ll, col = "blue", xaxis.lab = seq(1871,1970, length = 100),
xlab = "Year")