| sparseCV {sMTL} | R Documentation | 
sparseCV: cross-validation functions. For internal package use only.
Description
sparseCV: cross-validation functions. For internal package use only.
Usage
sparseCV(
  data,
  tune.grid,
  hoso = "hoso",
  method = "L0",
  nfolds = "K",
  juliaFnPath = NA,
  messageInd = FALSE,
  LSitr = 50,
  LSspc = 1,
  maxIter = 2500
)
Arguments
| data | Matrix with outcome and design matrix | 
| tune.grid | A data.frame of tuning values | 
| hoso | String specifying tuning type | 
| method | Sting specifying regression method | 
| nfolds | String or integer specifying number of folds | 
| juliaFnPath | String specifying path to Julia binary | 
| messageInd | Boolean for message printing | 
| LSitr | Integer specifying do <LSitr> local search iterations on parameter values where we do actually do LS; NA does no local search | 
| LSspc | Integer specifying number of hyperparameters to conduct local search: conduct local search every <LSspc>^th iteration. NA does no local search | 
| maxIter | Integer specifying max iterations of coordinate descent | 
Value
A list (S3 class) with elements used for cross validation.
| best | A dataframe with the hyperparameters associated with the best prediction performance and summary statistics of performance. | 
| best.1se | A dataframe including optimal hyperparameters according to 1-standard deviation rule. | 
| rmse | A dataframe with prediction performance for hyperparamters in tuning grid for all folds. | 
| avg | A dataframe with average performance at each of the hyperparameters in tuning grid (averaged across tasks). |