predict {sMTL} | R Documentation |
predict: predict on smtl model object
Description
predict: predict on smtl model object
Usage
predict(model, X, lambda_1 = NA, lambda_2 = NA, lambda_z = NA, stack = FALSE)
Arguments
model |
An sMTL model object returned from the smtl() function |
X |
A matrix of deatures |
lambda_1 |
A optional numeric scalar specifying which lambda_1 to use for prediction. Only needed if the model object is fit on a path (multiple hyperparameterr values) |
lambda_2 |
A optional numeric scalar specifying which lambda_2 to use for prediction. Only needed if the model object is fit on a path (multiple hyperparameterr values) |
lambda_z |
A optional numeric scalar specifying which lambda_2 to use for prediction. Only needed if the model object is fit on a path (multiple hyperparameterr values) |
stack |
An optional boolean specifying whether to calculate and apply stacking weights (only for Domain Generalization problems). |
Value
A matrix of task-specific predictions for multi-task/multi-label or for Domain Generalization problems, average and multi-study stacking predictions.
Examples
#####################################################################################
##### First Time Loading, Julia is Installed and Julia Path is Known ######
#####################################################################################
# fit model
## Not run:
if (identical(Sys.getenv("AUTO_JULIA_INSTALL"), "true")) { ## The examples are quite time consuming
## Do initiation for and automatic installation if necessary
mod <- smtl(y = y,
X = X,
study = task,
s = 5,
commonSupp = FALSE,
lambda_1 = c(0.1, 0.2, 0.3),
lambda_z = c(0.01, 0.05, 0.1))
# make predictions
preds <- sMTL::predict.smtl(model = mod,
X = X,
lambda_1 = 0.1,
lambda_z = 0.01) }
## End(Not run)