fastClustering {sClust} | R Documentation |
Fast Spectral Clustering
Description
This function will sample the data before performing a classification function on the samples and then applying K nearest neighbours.
Usage
fastClustering(
dataFrame,
smplPoint,
stopCriteria = 0.99,
neighbours = 7,
similarity = TRUE,
clustFunction,
...
)
Arguments
dataFrame |
The dataFrame. |
smplPoint |
maximum of sample number for reduction. |
stopCriteria |
criterion for minimizing intra-group distance and select final smplPoint. |
neighbours |
number of points that will be selected for the similarity computation. |
similarity |
if True, will use the similarity matrix for the clustering function. |
clustFunction |
the clustering function to apply on data. |
... |
additional arguments for the clustering function. |
Value
returns a list containing the following elements:
results: clustering results
sample: dataframe containing the sample used
quantLabels: quantization labels
clustLabels: results labels
kmeans: kmeans quantization results
Author(s)
Emilie Poisson Caillault and Erwan Vincent
Examples
### Example 1: 2 disks of the same size
n<-100 ; r1<-1
x<-(runif(n)-0.5)*2;
y<-(runif(n)-0.5)*2
keep1<-which((x*2+y*2)<(r1*2))
disk1<-data.frame(x+3*r1,y)[keep1,]
disk2 <-data.frame(x-3*r1,y)[keep1,]
sameTwoDisks <- rbind(disk1,disk2)
res <- fastClustering(scale(sameTwoDisks),smplPoint = 500,
stopCriteria = 0.99, neighbours = 7, similarity = TRUE,
clustFunction = UnormalizedSC, K = 2)
plot(sameTwoDisks, col = as.factor(res$clustLabels))
### Example 2: Speed and Stopping Distances of Cars
res <- fastClustering(scale(iris[,-5]),smplPoint = 500,
stopCriteria = 0.99, neighbours = 7, similarity = TRUE,
clustFunction = spectralPAM, K = 3)
plot(iris, col = as.factor(res$clustLabels))
table(res$clustLabels,iris$Species)