Rcpp_s2net-class {s2net} | R Documentation |
Class s2net
Description
This is the main class of this library, implemented in C++ and exposed to R using Rcpp
modules.
It can be used in R directly, although some generic S4 methods have been implemented to make it easier to interact in R.
Methods
- predict
signature(object = "Rcpp_s2net")
: Seepredict_Rcpp_s2net
Fields
beta
:Object of class
matrix
. The fitted model coefficients.intercept
:The model intercept.
Class-Based Methods
initialize(data, loss)
:-
data
-
s2Data
object loss
Loss function: 0 = linear, 1 = logit
setupFista(s2Fista)
:Configures the FISTA internal algorithm.
predict(newX, type)
:-
newX
New data
matrix
to make predictions.type
0 = default, 1 = response, 2 = probs, 3 = class
fit(params, frame, proj)
:-
params
s2Params
objectframe
0 = "JT", 1 = "ExtJT"
proj
0 = no, 1 = yes, 2 = auto
Author(s)
Juan C. Laria
Examples
data("auto_mpg")
train = s2Data(xL = auto_mpg$P1$xL, yL = auto_mpg$P1$yL, xU = auto_mpg$P1$xU)
# We create the C++ object calling the new method (constructor)
obj = new(s2net, train, 0) # 0 = regression
obj
# We call directly the $fit method of obj,
obj$fit(s2Params(lambda1 = 0.01,
lambda2 = 0.01,
gamma1 = 0.05,
gamma2 = 100,
gamma3 = 0.05), 1, 2)
# fitted model
obj$beta
# We can test the results using the unlabeled data
test = s2Data(xL = auto_mpg$P1$xU, yL = auto_mpg$P1$yU, preprocess = train)
ypred = obj$predict(test$xL, 0)
## Not run:
if(require(ggplot2)){
ggplot() +
aes(x = ypred, y = test$yL) + geom_point() +
geom_abline(intercept = 0, slope = 1, linetype = 2)
}
## End(Not run)
[Package s2net version 1.0.7 Index]