assertRxUi {rxode2} | R Documentation |
Assert properties of the rxUi models
Description
Assert properties of the rxUi models
Usage
assertRxUi(model, extra = "", .var.name = .vname(model))
assertRxUiPrediction(model, extra = "", .var.name = .vname(model))
assertRxUiSingleEndpoint(model, extra = "", .var.name = .vname(model))
assertRxUiTransformNormal(model, extra = "", .var.name = .vname(model))
assertRxUiNormal(model, extra = "", .var.name = .vname(model))
assertRxUiMuRefOnly(model, extra = "", .var.name = .vname(model))
assertRxUiEstimatedResiduals(model, extra = "", .var.name = .vname(model))
assertRxUiPopulationOnly(model, extra = "", .var.name = .vname(model))
assertRxUiMixedOnly(model, extra = "", .var.name = .vname(model))
assertRxUiRandomOnIdOnly(model, extra = "", .var.name = .vname(model))
Arguments
model |
Model to check |
extra |
Extra text to append to the error message (like "for focei") |
.var.name |
[ |
Details
These functions have different types of assertions
-
assertRxUi
– Make sure this is a proper rxode2 model (if not throw error) -
assertRxUiSingleEndpoint
– Make sure the rxode2 model is only a single endpoint model (if not throw error) -
assertRxUiTransformNormal
– Make sure that the model residual distribution is normal or transformably normal -
assertRxUiNormal
– Make sure that the model residual distribution is normal -
assertRxUiEstimatedResiduals
– Make sure that the residual error parameters are estimated (not modeled). -
assertRxUiPopulationOnly
– Make sure the model is the population only model (no mixed effects) -
assertRxUiMixedOnly
– Make sure the model is a mixed effect model (not a population effect, only) -
assertRxUiPrediction
– Make sure the model has predictions -
assertRxUiMuRefOnly
– Make sure that all the parameters are mu-referenced -
assertRxUiRandomOnIdOnly
– Make sure there are only random effects at the ID level
Value
the rxUi model
Author(s)
Matthew L. Fidler
Examples
one.cmt <- function() {
ini({
tka <- 0.45; label("Ka")
tcl <- log(c(0, 2.7, 100)); label("Cl")
tv <- 3.45; label("V")
eta.ka ~ 0.6
eta.cl ~ 0.3
eta.v ~ 0.1
add.sd <- 0.7
})
model({
ka <- exp(tka + eta.ka)
cl <- exp(tcl + eta.cl)
v <- exp(tv + eta.v)
linCmt() ~ add(add.sd)
})
}
assertRxUi(one.cmt)
# assertRxUi(rnorm) # will fail
assertRxUiSingleEndpoint(one.cmt)