vMFangle {rvMF} | R Documentation |
Inner Product of von Mises–Fisher Random Vector and Mean Direction
Description
These functions provide information about the distribution of an inner
product between von Mises–Fisher random vector and its mean direction.
Specifically, if X
follows a von Mises–Fisher distribution with mean
direction \mu
, the inner product X'\mu
will be a random variable
following some distribution. See page 170 of Mardia and Jupp (1999).
rvMFangle()
generates random variates using the algorithm proposed in Kang
and Oh (2024), and dvMFangle
gives the density from this distribution. This
function partly uses the code from the article Marsaglia et al. (2004).
Usage
rvMFangle(n, p, kappa)
dvMFangle(r, p, kappa)
Arguments
n |
number of random vectors to generate. |
p |
dimension of the sphere. i.e.,
Sp-1, |
kappa |
concentration parameter. |
r |
vector of quantiles. -1 ≤ |
Value
-
rvMFangle()
returns a vector whose components independently follow the aforementioned distribution. The length of the result is determined byn
forrvMFangle()
. -
dvMFangle()
returns a vector of density function value. The length of the result is determined by the length ofr
fordvMFangle()
.
References
S. Kang and H.-S. Oh. Novel sampling method for the von Mises–Fisher distribution. Statistics and Computing, 34(3):106, 2024.
K. V. Mardia and P. E. Jupp. Directional Statistics, volume 494. John Wiley & Sons, Chichester, 1999.
G. Marsaglia, W. W. Tsang, and J. Wang. Fast generation of discrete random variables. Journal of Statistical Software, 11(3):1–11, 2004.
See Also
rvMF()
wrapper of rvMFangle()
.
Examples
rvMFangle(10, 2, 10)
rvMFangle(10, 3, 0.1)
dvMFangle(seq(-1,1,by=0.01), 2, 10)
dvMFangle(seq(0,1,by=0.01), 3, 0.1)