mk_figure_ind_obs {ruminate} | R Documentation |
Creates Figures of Individual Observations from PKNCA Result
Description
Takes the output of PKNCA and creates ggplot
figures faceted
by subject id highlighting of certain NCA aspects (e.g. points used for half-life)
Usage
mk_figure_ind_obs(
nca_res,
OBS_LAB = "Concentration ===CONCUNITS===",
TIME_LAB = "Time ===TIMEUNITS===",
OBS_STRING = "Observation",
BLQ_STRING = "BLQ",
NA_STRING = "Missing",
log_scale = TRUE,
scales = "fixed",
nfrows = 4,
nfcols = 3
)
Arguments
nca_res |
Output of PKNCA. |
OBS_LAB |
Label of the observation axis with optional ===CONCUNITS=== placeholder for units. |
TIME_LAB |
Label of the time axis with optional ===TIMEUNITS=== placeholder for units. |
OBS_STRING |
Label for observation data. |
BLQ_STRING |
Label for BLQ data. |
NA_STRING |
Label for missing data. |
log_scale |
Boolean variable to control y-scale ( |
scales |
String to determine the scales used when faceting. Can be either |
nfrows |
Number of facet rows per page. |
nfcols |
Number of facet cols per page. |
Value
List containing the element figures
which is a list of figure
pages ("Figure 1"
, "Figure 2"
, etc.). Each of these is
a also a list containing two elements:
gg: A ggplot object for that page.
notes: Placeholder for future notes, but NULL now.
Examples
id = "NCA"
id_UD = "UD"
id_DW = "DW"
id_ASM = "ASM"
# We need a state variable to be define
sess_res = NCA_test_mksession(session=list(),
id = id,
id_UD = id_UD,
id_DW = id_DW,
id_ASM = id_ASM,
full_session=FALSE)
state = sess_res$state
# Pulls out the active analysis
current_ana = NCA_fetch_current_ana(state)
# This is the raw PKNCA output
pknca_res = NCA_fetch_ana_pknca(state, current_ana)
# Building the figure
mk_res = mk_figure_ind_obs(nca_res = pknca_res)
mk_res$figures$Figure_1$gg