twoFACTORplot {rtpcr} | R Documentation |
Bar plot of the relative gene expression (\Delta C_T
method) from the qpcrANOVARE
output of a two-factorial experiment data
Description
Bar plot of the relative expression (\Delta C_T
method) of a gene along with the standard error (se), 95% confidence interval (ci) and significance
Usage
twoFACTORplot(
res,
x.axis.factor,
group.factor,
width = 0.5,
fill = "Blues",
y.axis.adjust = 0.5,
y.axis.by = 2,
show.errorbars = TRUE,
errorbar,
show.letters = TRUE,
letter.position.adjust = 0.1,
ylab = "Relative Expression",
xlab = "none",
legend.position = c(0.09, 0.8),
fontsize = 12,
fontsizePvalue = 5,
axis.text.x.angle = 0,
axis.text.x.hjust = 0.5
)
Arguments
res |
the FC data frame created by |
x.axis.factor |
x-axis factor. |
group.factor |
grouping factor. |
width |
a positive number determining bar width. |
fill |
specify the fill color vector for the columns of the bar plot. One of the palettes in |
y.axis.adjust |
a negative or positive number for reducing or increasing the length of the y axis. |
y.axis.by |
determines y axis step length. |
show.errorbars |
show errorbars |
errorbar |
Type of error bar, can be |
show.letters |
a logical variable. If TRUE, mean grouping letters are added to the bars. |
letter.position.adjust |
adjust the distance between the grouping letters to the error bars. |
ylab |
the title of the y axis. |
xlab |
the title of the x axis. |
legend.position |
a two digit vector specifying the legend position. |
fontsize |
size of all fonts of the plot. |
fontsizePvalue |
font size of the pvalue labels |
axis.text.x.angle |
angle of x axis text |
axis.text.x.hjust |
horizontal justification of x axis text |
Details
The twoFACTORplot
function generates the bar plot of the average fold change for target genes along with the significance, standard error (se) and the 95% confidence interval (ci) as error bars.
Value
Bar plot of the average fold change for target genes along with the standard error or 95% confidence interval as error bars.
Author(s)
Ghader Mirzaghaderi
Examples
# See a sample data frame
data_2factor
# Before generating plot, the result table needs to be extracted as below:
res <- qpcrANOVARE(data_2factor, numberOfrefGenes = 1, block = NULL)$Result
# Plot of the 'res' data with 'Genotype' as grouping factor
twoFACTORplot(res,
x.axis.factor = Drought,
group.factor = Genotype,
width = 0.5,
fill = "Greens",
y.axis.adjust = 1,
y.axis.by = 2,
ylab = "Relative Expression",
xlab = "Drought Levels",
letter.position.adjust = 0.2,
legend.position = c(0.2, 0.8),
errorbar = "se")
# Plotting the same data with 'Drought' as grouping factor
twoFACTORplot(res,
x.axis.factor = Genotype,
group.factor = Drought,
xlab = "Genotype",
fill = "Blues",
fontsizePvalue = 5,
errorbar = "ci")
# Combining FC results of two different genes:
a <- qpcrREPEATED(data_repeated_measure_1,
numberOfrefGenes = 1,
factor = "time", block = NULL, plot = FALSE)
b <- qpcrREPEATED(data_repeated_measure_2,
factor = "time",
numberOfrefGenes = 1, block = NULL, plot = FALSE)
a1 <- a$FC_statistics_of_the_main_factor
b1 <- b$FC_statistics_of_the_main_factor
c <- rbind(a1, b1)
c$gene <- factor(c(1,1,1,2,2,2))
c
twoFACTORplot(c, x.axis.factor = contrast,
group.factor = gene, fill = 'Reds',
ylab = "FC", axis.text.x.angle = 45,
errorbar = "se", y.axis.adjust = 1,
axis.text.x.hjust = 1)