| rrpca {rsvd} | R Documentation | 
Randomized robust principal component analysis (rrpca).
Description
Robust principal components analysis separates a matrix into a low-rank plus sparse component.
Usage
rrpca(
  A,
  lambda = NULL,
  maxiter = 50,
  tol = 1e-05,
  p = 10,
  q = 2,
  trace = FALSE,
  rand = TRUE
)
Arguments
A | 
 array_like;   | 
lambda | 
 scalar, optional;   | 
maxiter | 
 integer, optional;   | 
tol | 
 scalar, optional;   | 
p | 
 integer, optional;   | 
q | 
 integer, optional;   | 
trace | 
 bool, optional;   | 
rand | 
 bool, optional;   | 
Details
Robust principal component analysis (RPCA) is a method for the robust seperation of a
a rectangular (m,n) matrix A into a low-rank component L and a
sparse comonent S: 
A = L + S
To decompose the matrix, we use the inexact augmented Lagrange multiplier method (IALM). The algorithm can be used in combination with either the randomized or deterministic SVD.
Value
rrpca returns a list containing the following components:
- L
 array_like;
low-rank component;(m, n)dimensional array.- S
 array_like
sparse component;(m, n)dimensional array.
Author(s)
N. Benjamin Erichson, erichson@berkeley.edu
References
[1] N. B. Erichson, S. Voronin, S. L. Brunton and J. N. Kutz. 2019. Randomized Matrix Decompositions Using R. Journal of Statistical Software, 89(11), 1-48. doi: 10.18637/jss.v089.i11.
[2] Lin, Zhouchen, Minming Chen, and Yi Ma. "The augmented lagrange multiplier method for exact recovery of corrupted low-rank matrices." (2010). (available at arXiv https://arxiv.org/abs/1009.5055).
Examples
library('rsvd')
# Create toy video
# background frame
xy <- seq(-50, 50, length.out=100)
mgrid <- list( x=outer(xy*0,xy,FUN="+"), y=outer(xy,xy*0,FUN="+") )
bg <- 0.1*exp(sin(-mgrid$x**2-mgrid$y**2))
toyVideo <- matrix(rep(c(bg), 100), 100*100, 100)
# add moving object
for(i in 1:90) {
  mobject <- matrix(0, 100, 100)
  mobject[i:(10+i), 45:55] <- 0.2
  toyVideo[,i] =  toyVideo[,i] + c( mobject )
}
# Foreground/Background separation
out <- rrpca(toyVideo, trace=TRUE)
# Display results of the seperation for the 10th frame
par(mfrow=c(1,4))
image(matrix(bg, ncol=100, nrow=100)) #true background
image(matrix(toyVideo[,10], ncol=100, nrow=100)) # frame
image(matrix(out$L[,10], ncol=100, nrow=100)) # seperated background
image(matrix(out$S[,10], ncol=100, nrow=100)) #seperated foreground