| rqb {rsvd} | R Documentation | 
Randomized QB Decomposition (rqb).
Description
Compute the near-optimal QB decomposition of a rectangular matrix.
Usage
rqb(A, k = NULL, p = 10, q = 2, sdist = "normal", rand = TRUE)
Arguments
A | 
 array_like;   | 
k | 
 integer, optional;   | 
p | 
 integer, optional;   | 
q | 
 integer, optional;   | 
sdist | 
 string   | 
rand | 
 bool, optional;   | 
Details
The randomized QB decomposition factors a rectangular (m,n) matrix A as
A = Q * B. Q is an (m,k) matrix with orthogonal columns, and B a (k,n) matrix.
The target rank is assumed to be k << min(m,n).   
p is an oversampling parameter to improve the approximation.
A value between 5 and 10 is recommended, and p=10 is set by default.
The parameter q specifies the number of power (subspace) iterations
to reduce the approximation error. This is recommended
if the the singular values decay slowly. In practice 1 or 2 iterations
achieve good results, however, computing power iterations increases the
computational time. The number of power iterations is set to q=2 by default.
Value
rqb returns a list containing the following components:
- Q
 array_like;
matrix with orthogonal columns;(m, k)dimensional array.- B
 array_like;
smaller matrix;(k, n)dimensional array.
Author(s)
N. Benjamin Erichson, erichson@berkeley.edu
References
[1] N. B. Erichson, S. Voronin, S. L. Brunton and J. N. Kutz. 2019. Randomized Matrix Decompositions Using R. Journal of Statistical Software, 89(11), 1-48. doi: 10.18637/jss.v089.i11.
[2] N. Halko, P. Martinsson, and J. Tropp. "Finding structure with randomness: probabilistic algorithms for constructing approximate matrix decompositions" (2009). (available at arXiv https://arxiv.org/abs/0909.4061).