rqb {rsvd} | R Documentation |
Randomized QB Decomposition (rqb).
Description
Compute the near-optimal QB decomposition of a rectangular matrix.
Usage
rqb(A, k = NULL, p = 10, q = 2, sdist = "normal", rand = TRUE)
Arguments
A |
array_like; |
k |
integer, optional; |
p |
integer, optional; |
q |
integer, optional; |
sdist |
string |
rand |
bool, optional; |
Details
The randomized QB decomposition factors a rectangular (m,n)
matrix A
as
A = Q * B
. Q
is an (m,k)
matrix with orthogonal columns, and B
a (k,n)
matrix.
The target rank is assumed to be k << min(m,n)
.
p
is an oversampling parameter to improve the approximation.
A value between 5 and 10 is recommended, and p=10
is set by default.
The parameter q
specifies the number of power (subspace) iterations
to reduce the approximation error. This is recommended
if the the singular values decay slowly. In practice 1 or 2 iterations
achieve good results, however, computing power iterations increases the
computational time. The number of power iterations is set to q=2
by default.
Value
rqb
returns a list containing the following components:
- Q
array_like;
matrix with orthogonal columns;(m, k)
dimensional array.- B
array_like;
smaller matrix;(k, n)
dimensional array.
Author(s)
N. Benjamin Erichson, erichson@berkeley.edu
References
[1] N. B. Erichson, S. Voronin, S. L. Brunton and J. N. Kutz. 2019. Randomized Matrix Decompositions Using R. Journal of Statistical Software, 89(11), 1-48. doi: 10.18637/jss.v089.i11.
[2] N. Halko, P. Martinsson, and J. Tropp. "Finding structure with randomness: probabilistic algorithms for constructing approximate matrix decompositions" (2009). (available at arXiv https://arxiv.org/abs/0909.4061).