soft_impute {rsparse} | R Documentation |
SoftImpute/SoftSVD matrix factorization
Description
Fit SoftImpute/SoftSVD via fast alternating least squares. Based on the paper by Trevor Hastie, Rahul Mazumder, Jason D. Lee, Reza Zadeh by "Matrix Completion and Low-Rank SVD via Fast Alternating Least Squares" - http://arxiv.org/pdf/1410.2596
Usage
soft_impute(
x,
rank = 10L,
lambda = 0,
n_iter = 100L,
convergence_tol = 0.001,
init = NULL,
final_svd = TRUE
)
soft_svd(
x,
rank = 10L,
lambda = 0,
n_iter = 100L,
convergence_tol = 0.001,
init = NULL,
final_svd = TRUE
)
Arguments
x |
sparse matrix. Both CSR |
rank |
maximum rank of the low-rank solution. |
lambda |
regularization parameter for the nuclear norm |
n_iter |
maximum number of iterations of the algorithms |
convergence_tol |
convergence tolerance.
Internally functions keeps track of the relative change of the Frobenious norm
of the two consequent iterations. If the change is less than |
init |
svd like object with |
final_svd |
|
Value
svd-like object - list(u, v, d)
. u, v, d
components represent left, right singular vectors and singular values.
Examples
set.seed(42)
data('movielens100k')
k = 10
seq_k = seq_len(k)
m = movielens100k[1:100, 1:200]
svd_ground_true = svd(m)
svd_soft_svd = soft_svd(m, rank = k, n_iter = 100, convergence_tol = 1e-6)
m_restored_svd = svd_ground_true$u[, seq_k] %*%
diag(x = svd_ground_true$d[seq_k]) %*%
t(svd_ground_true$v[, seq_k])
m_restored_soft_svd = svd_soft_svd$u %*%
diag(x = svd_soft_svd$d) %*%
t(svd_soft_svd$v)
all.equal(m_restored_svd, m_restored_soft_svd, tolerance = 1e-1)