nlp {rsimsum} | R Documentation |
Example of a simulation study on survival modelling
Description
A dataset from a simulation study with 150 data-generating mechanisms, useful to illustrate nested loop plots. This simulation study aims to compare the Cox model and flexible parametric models in a variety of scenarios: different baseline hazard functions, sample size, and varying amount of heterogeneity unaccounted for in the model (simulated as white noise with a given variance). A Cox model and a Royston-Parmar model with 5 degrees of freedom are fit to each replication.
Usage
nlp
Format
A data frame with 30,000 rows and 10 variables:
-
dgm
Data-generating mechanism, 1 to 150. -
i
Simulated dataset number. -
model
Method used, with 1 the Cox model and 2 the RP(5) model. -
b
Point estimate for the log-hazard ratio. -
se
Standard error of the point estimate. -
baseline
Baseline hazard function of the simulated dataset. -
ss
Sample size of the simulated dataset. -
esigma
Standard deviation of the white noise. -
pars
(Ancillary) Parameters of the baseline hazard function.
Note
Further details on this simulation study can be found in the R script used to generate this dataset, available on GitHub: https://github.com/ellessenne/rsimsum/blob/master/data-raw/nlp-data.R
References
Cox D.R. 1972. Regression models and life-tables. Journal of the Royal Statistical Society, Series B (Methodological) 34(2):187-220. doi:10.1007/978-1-4612-4380-9_37
Royston, P. and Parmar, M.K. 2002. Flexible parametric proportional-hazards and proportional-odds models for censored survival data, with application to prognostic modelling and estimation of treatment effects. Statistics in Medicine 21(15):2175-2197 doi:10.1002/sim.1203
Rücker, G. and Schwarzer, G. 2014. Presenting simulation results in a nested loop plot. BMC Medical Research Methodology 14:129 doi:10.1186/1471-2288-14-129
Examples
data("nlp", package = "rsimsum")