threewise_plot {rrr} | R Documentation |
3-D Reduced Rank Regression Plots
Description
Create three-dimensional, interactive plotly graphics for exploration and diagnostics.
Usage
threewise_plot(x, y, type = "pca", pair_x = 1, pair_y = 2, pair_z = 3,
rank = "full", k = 0, point_size = 2.5)
Arguments
x |
data frame or matrix of predictor variables |
y |
data frame or matrix of response variables |
type |
type of reduced-rank regression model to fit. |
pair_x |
variable to be plotted on the |
pair_y |
variable to be plotted on the |
pair_z |
variable to be plotted on the |
rank |
rank of coefficient matrix. |
k |
small constant added to diagonal of covariance matrices to make inversion easier. |
point_size |
size of points in scatter plot. |
Value
three-dimensional plot. If type = "pca"
returns three principal components scores - defaulted to the first three - against each other.
If type = "cva"
returns three-dimensional plot of residuals. If type = "lda"
returns three-dimensional plot of three linear discriminant scores plotted against each other.
Examples
## Not run:
data(pendigits)
digits_features <- pendigits[, -35:-36]
threewise_plot(digits_features, digits_class, type = "pca", k = 0.0001)
library(dplyr)
data(COMBO17)
galaxy <- as_data_frame(COMBO17)
galaxy <- select(galaxy, -starts_with("e."), -Nr, -UFS:-IFD)
galaxy <- na.omit(galaxy)
galaxy_x <- select(galaxy, -Rmag:-chi2red)
galaxy_y <- select(galaxy, Rmag:chi2red)
threewise_plot(galaxy_x, galaxy_y, type = "cva")
data(iris)
iris_x <- iris[,1:4]
iris_y <- iris[5]
threewise_plot(iris_x, iris_y, type = "lda")
## End(Not run)