srrr {rrpack} | R Documentation |
Row-sparse reduced-eank regresssion
Description
Row-sparse reduced-rank regresssion for a prespecified rank; produce a solution path for selecting predictors
Usage
srrr(
Y,
X,
nrank = 2,
method = c("glasso", "adglasso"),
ic.type = c("BIC", "BICP", "AIC", "GCV", "GIC"),
A0 = NULL,
V0 = NULL,
modstr = list(),
control = list(),
screening = FALSE
)
Arguments
Y |
response matrix |
X |
covariate matrix |
nrank |
prespecified rank |
method |
group lasso or adaptive group lasso |
ic.type |
information criterion |
A0 |
initial value |
V0 |
initial value |
modstr |
a list of model parameters controlling the model fitting |
control |
a list of parameters for controlling the fitting process |
screening |
If TRUE, marginal screening via glm is performed before srrr fitting. |
Details
Model parameters controlling the model fitting can be specified through
argument modstr
. The available elements include
lamA: tuning parameter sequence.
nlam: number of tuning parameters; no effect if
lamA
is specified.minLambda: minimum lambda value, no effect if
lamA
is specified.maxLambda: maxmum lambda value, no effect if lamA is specified.
WA: adaptive weights. If NULL, the weights are constructed from RRR.
wgamma: power parameter for constructing adaptive weights.
Similarly, the computational parameters controlling optimization can be
specified through argument control
. The available elements include
epsilon: epsilonergence tolerance.
maxit: maximum number of iterations.
inner.eps: used in inner loop.
inner.maxit: used in inner loop.
Value
A list of fitting results
References
Chen, L. and Huang, J. Z. (2012) Sparse reduced-rank regression for simultaneous dimension reduction and variable selection. Journal of the American Statistical Association. 107:500, 1533–1545.
Examples
library(rrpack)
p <- 100; n <- 100; nrank <- 3
mydata <- rrr.sim2(n, p, p0 = 10,q = 50, q0 = 10, nrank = 3,
s2n = 1, sigma = NULL, rho_X = 0.5, rho_E = 0)
fit1 <- with(mydata, srrr(Y, X, nrank = 3))
summary(fit1)
coef(fit1)
plot(fit1)