| r4 {rrpack} | R Documentation | 
Robust reduced-rank regression
Description
Perform robust reduced-rank regression.
Usage
r4(
  Y,
  X,
  maxrank = min(dim(Y), dim(X)),
  method = c("rowl0", "rowl1", "entrywise"),
  Gamma = NULL,
  ic.type = c("AIC", "BIC", "PIC"),
  modstr = list(),
  control = list()
)
Arguments
| Y | a matrix of response (n by q) | 
| X | a matrix of covariate (n by p) | 
| maxrank | maximum rank for fitting | 
| method | outlier detection method, either entrywise or rowwise | 
| Gamma | weighting matrix in the loss function | 
| ic.type | information criterion, AIC, BIC or PIC | 
| modstr | a list of model parameters controlling the model fitting | 
| control | a list of parameters for controlling the fitting process | 
Details
The model parameters can be controlled through argument modstr.
The available elements include
- nlam: parameter in the augmented Lagrangian function. 
- adaptive: if - TRUE, use leverage values for adaptive penalization. The default value is- FALSE.
- weights: user supplied weights for adaptive penalization. 
- minlam: maximum proportion of outliers. 
- maxlam: maximum proportion of good observations. 
- delid: discarded observation indices for initial estimation. 
The model fitting can be controlled through argument control.
The available elements include
- epsilon: convergence tolerance. 
- maxit: maximum number of iterations. 
- qr.tol: tolerance for qr decomposition. 
- tol: tolerance. 
Value
a list consisting of
| coef.path | solutuon path of regression coefficients | 
| s.path | solutuon path of sparse mean shifts | 
| s.norm.path | solutuon path of the norms of sparse mean shifts | 
| ic.path | paths of information criteria | 
| ic.smooth.path | smoothed paths of information criteria | 
| lambda.path | paths of the tuning parameter | 
| id.solution | ids of the selected solutions on the path | 
| ic.best | lowest values of the information criteria | 
| rank.best | rank values of selected solutions | 
| coef | estimated regression coefficients | 
| s | estimated sparse mean shifts | 
| rank | rank estimate | 
References
She, Y. and Chen, K. (2017) Robust reduced-rank regression. Biometrika, 104 (3), 633–647.
Examples
## Not run: 
library(rrpack)
n <- 100; p <- 500; q <- 50
xrank <- 10; nrank <- 3; rmax <- min(n, p, q, xrank)
nlam <- 100; gamma <- 2
rho_E <- 0.3
rho_X <- 0.5
nlev <- 0
vlev <- 0
vout <- NULL
vlevsd <- NULL
nout <- 0.1 * n
s2n <- 1
voutsd <- 2
simdata <- rrr.sim5(n, p, q, nrank, rx = xrank, s2n = s2n,
                    rho_X = rho_X, rho_E = rho_E, nout = nout, vout = vout,
                    voutsd = voutsd,nlev = nlev,vlev=vlev,vlevsd=vlevsd)
Y <- simdata$Y
X <- simdata$X
fit <- r4(Y, X, maxrank = rmax,
               method = "rowl0", ic.type= "PIC")
summary(fit)
coef(fit)
which(apply(fit$s,1,function(a)sum(a^2))!=0)
## End(Not run)