cv.srrr {rrpack}R Documentation

Row-sparse reduced-rank regression tuned by cross validation

Description

Row-sparse reduced-rank regression tuned by cross validation

Usage

cv.srrr(
  Y,
  X,
  nrank = 1,
  method = c("glasso", "adglasso"),
  nfold = 5,
  norder = NULL,
  A0 = NULL,
  V0 = NULL,
  modstr = list(),
  control = list()
)

Arguments

Y

response matrix

X

covariate matrix

nrank

prespecified rank

method

group lasso or adaptive group lasso

nfold

fold number

norder

for constructing the folds

A0

initial value

V0

initial value

modstr

a list of model parameters controlling the model fitting

control

a list of parameters for controlling the fitting process

Details

Model parameters controlling the model fitting can be specified through argument modstr. The available elements include

Similarly, the computational parameters controlling optimization can be specified through argument control. The available elements include

Value

A list of fitting results

References

Chen, L. and Huang, J.Z. (2012) Sparse reduced-rank regression for simultaneous dimension reduction and variable selection. Journal of the American Statistical Association. 107:500, 1533–1545.


[Package rrpack version 0.1-13 Index]