get.norm.sd {rriskDistributions} | R Documentation |
Fitting standard deviation of a normal distribution from one or more quantiles and known mean
Description
get.norm.sd
returns the standard deviation of a normal distribution
where the p
th percentiles match with the quantiles q
.
Usage
get.norm.sd(p = c(0.025, 0.5, 0.975), q, show.output = TRUE, plot = TRUE,
fit.weights = rep(1, length(p)), scaleX = c(0.1, 0.9), ...)
Arguments
p |
numeric, vector of probabilities. |
q |
numeric, vector of quantiles corresponding to p. |
show.output |
logical, if |
plot |
logical, if |
fit.weights |
numerical vector of the same length as a probabilities vector
|
scaleX |
numerical vector of the length 2 containing values (from the open interval (0, 1))
for scaling quantile-axis (relevant only if |
... |
further arguments passed to the functions |
Details
The number of probabilities and the number of quantiles must be identical and
should be at least two. get.norm.sd
uses the central limit theorem and
the linear regression.
If show.output = TRUE
the output of the function lm
will be shown.
The items of the probability vector p
should lie between 0 and 1.
The items of the weighting vector fit.weights
should be positive values.
The function will be meaningful only if the quantile comes from a normal distribution.
Value
Returns an estimated standard deviation or missing value
Note
It should be noted that the data must be normally distributed, or the central limt theorem must hold for large (enough) samples sizes.
Author(s)
Matthias Greiner matthias.greiner@bfr.bund.de (BfR),
Katharina Schueller schueller@stat-up.de (STAT-UP Statistical Consulting),
Natalia Belgorodski belgorodski@stat-up.de (STAT-UP Statistical Consulting)
See Also
See pnorm
for distribution implementation details.
Examples
q <- stats::qnorm(p = c(0.025, 0.5, 0.975), mean = 0, sd = 2)
old.par <- graphics::par(mfrow = c(2, 3))
get.norm.sd(q = q)
get.norm.sd(q = q, scaleX = c(0.0001, 0.9999))
get.norm.sd(q = q, fit.weights = c(10, 1, 10))
get.norm.sd(q = q, fit.weights = c(1, 10, 1))
get.norm.sd(q = q, fit.weights = c(100, 1, 100))
get.norm.sd(q = q, fit.weights = c(1, 100, 1))
graphics::par(old.par)
q <- stats::qnorm(p = c(0.025, 0.5, 0.975), mean = 176, sd = 15)
old.par <- graphics::par(mfrow = c(2, 3))
get.norm.sd(q = q)
get.norm.sd(q = q, fit.weights = c(10, 1, 10))
get.norm.sd(q = q, fit.weights = c(1, 10, 1))
get.norm.sd(q = q, fit.weights = c(100, 1, 100))
get.norm.sd(q = q, fit.weights = c(1, 100, 1))
graphics::par(old.par)
## The estimation model is not suitable for the following quantiles.
## Because the quantile is unsymmetrical, which could not be from a normally distributed data.
q <- c(-2, 30, 31)
old.par <- graphics::par(mfrow = c(2, 3))
get.norm.sd(q = q)
get.norm.sd(q = q, fit.weights = c(10, 1, 10))
get.norm.sd(q = q, fit.weights = c(1, 10, 1), scaleX = c(0.0001, 0.9999))
get.norm.sd(q = q, fit.weights = c(100, 1, 100))
get.norm.sd(q = q, fit.weights = c(1, 100, 1), scaleX = c(0.0001, 0.9999))
graphics::par(old.par)
## Estimating from actually exponentially distributed data
x.exp <- rexp(n = 10, rate = 5)
mean(x.exp)
stats::sd(x.exp)
q <- quantile(x.exp, c(0.025, 0.5, 0.975))
old.par <- graphics::par(mfrow = c(2, 3))
get.norm.sd(q = q)
get.norm.sd(q = q, fit.weights = c(1, 10, 1))
get.norm.sd(q = q, fit.weights = c(10, 1, 10))
get.norm.sd(q = q, fit.weights = c(1, 100, 1))
get.norm.sd(q = q, fit.weights = c(100, 1, 100))
graphics::par(old.par)
## other examples
q <- stats::qnorm(p = c(0.025, 0.5, 0.975), mean = 1, sd = 1)
get.norm.sd(q = q)
q <- stats::qnorm(p = c(0.025, 0.5, 0.975), mean = 1, sd = 0.5)
get.norm.sd(q = q)
q <- stats::qnorm(p = c(0.025, 0.5, 0.975), mean = 0.01, sd = 0.1)
get.norm.sd(q = q)