Easy.Calibration {rrepast} | R Documentation |
Easy.Calibration
Description
Search for the best set of parameters trying to minimize the calibration function provided by the user. The function has to operational models, the first based on the experimental setup where all parameters are defined a priori and the second using optimization techniques. Currently the only supported optimization technique is the particle swarm optimization.
Usage
Easy.Calibration(m.dir, m.ds, m.time = 300, parameters, exp.n = 100,
exp.r = 1, smax = 4, design = "lhs", FUN, default = NULL)
Arguments
m.dir |
The installation directory of some repast model |
m.ds |
The name of any model aggregate dataset |
m.time |
The total simulated time |
parameters |
The input factors |
exp.n |
The experiment sample size |
exp.r |
The number of experiment replications |
smax |
The number of solutions to be generated |
design |
The sampling scheme ["lhs"|"mcs"|"ffs"] |
FUN |
The objective or cost function. A function defined over the model output. |
default |
The alternative values for parameters which should be kept fixed |
Value
A list with holding experiment, object and charts
Examples
## Not run:
my.cost<- function(params, results) {
criteria<- c()
Rate<- AoE.RMSD(results$X.Simulated,results$X.Experimental)
G<- AoE.RMSD(results$G.T.,52)
total<- Rate + G
criteria<- cbind(total,Rate,G)
return(criteria)
}
Easy.Setup("/models/BactoSim")
v<- Easy.Calibration("/models/BactoSim","ds::Output",360,
f,exp.n = 1000, exp.r=1, smax=4,
design="mcs", my.cost)
## End(Not run)