Tucker3 {rrcov3way} | R Documentation |
Robust Tucker3 estimator for compositional data
Description
Compute a robust Tucker3 model for compositional data
Usage
Tucker3(X, P = 2, Q = 2, R = 2,
center = FALSE, center.mode = c("A", "B", "C", "AB", "AC", "BC", "ABC"),
scale = FALSE, scale.mode = c("B", "A", "C"),
conv = 1e-06, start="svd",
robust = FALSE, coda.transform=c("none", "ilr", "clr"),
ncomp.rpca = 0, alpha = 0.75, robiter=100, crit=0.975, trace = FALSE)
Arguments
X |
3-way array of data |
P |
Number of A-mode components |
Q |
Number of B-mode components |
R |
Number of C-mode components |
center |
Whether to center the data |
center.mode |
If scaling the data, on which mode to do this |
scale |
Whether to scale the data |
scale.mode |
If centering the data, on which mode to do this |
conv |
Convergence criterion, defaults to |
start |
Initial values for the A, B and C components. Can be |
robust |
Whether to apply a robust estimation |
coda.transform |
If the data are a composition, use an ilr or clr transformation.
Default is non-compositional data, i.e. |
ncomp.rpca |
Number of components for robust PCA |
alpha |
Measures the fraction of outliers the algorithm should resist. Allowed values are between 0.5 and 1 and the default is 0.75 |
robiter |
Maximal number of iterations for robust estimation |
crit |
Cut-off for identifying outliers, default |
trace |
Logical, provide trace output |
Details
The function can compute four versions of the Tucker3 model:
Classical Tucker3,
Tucker3 for compositional data,
Robust Tucker3 and
Robust Tucker3 for compositional data.
This is controlled through the parameters robust=TRUE
and coda.transform="ilr"
.
Value
An object of class "tucker3" which is basically a list with components:
fit |
Fit value |
fp |
Fit percentage |
A |
Orthogonal loading matrix for the A-mode |
B |
Orthogonal loading matrix for the B-mode |
Bclr |
Orthogonal loading matrix for the B-mode, clr transformed.
Available only if |
C |
Orthogonal loading matrix for the C-mode |
GA |
Core matrix, which describes the relation between |
iter |
Number of iterations |
rd |
Residual distances |
sd |
Score distances |
flag |
The observations whose residual distance |
robust |
The paramater |
coda.transform |
The input paramater |
La |
Diagonal matrix containing the intrinsic eigenvalues for A-mode |
Lb |
Diagonal matrix containing the intrinsic eigenvalues for B-mode |
Lc |
Diagonal matrix containing the intrinsic eigenvalues for C-mode |
Author(s)
Valentin Todorov valentin.todorov@chello.at and Maria Anna Di Palma madipalma@unior.it and Michele Gallo mgallo@unior.it
References
Tucker, L.R. (1966). Some mathematical notes on three-mode factor analysis. Psychometrika, 31: 279–311.
Egozcue J.J., Pawlowsky-Glahn, V., Mateu-Figueras G. and Barcel'o-Vidal, C. (2003). Isometric logratio transformations for compositional data analysis. Mathematical Geology, 35(3): 279–300.
Examples
#############
##
## Example with the UNIDO Manufacturing value added data
data(va3way)
dim(va3way)
## Treat quickly and dirty the zeros in the data set (if any)
va3way[va3way==0] <- 0.001
##
res <- Tucker3(va3way)
res
print(res$fit)
print(res$A)
## Print the core matrix
print(res$GA)
## Distance-distance plot
plot(res, which="dd", main="Distance-distance plot")
## Paired component plot, mode A
plot(res, which="comp", main="Paired component plot (mode A)")
## Paired component plot, mode B
plot(res, which="comp", mode="B", main="Paired component plot (mode B)")
## Joint biplot
plot(res, which="jbplot", main="Joint biplot")
## Trajectory
plot(res, which="tjplot", choices=c(1:4), arrows=FALSE, main="Trajectory biplot")