| Tucker3 {rrcov3way} | R Documentation | 
Robust Tucker3 estimator for compositional data
Description
Compute a robust Tucker3 model for compositional data
Usage
Tucker3(X, P = 2, Q = 2, R = 2, 
    center = FALSE, center.mode = c("A", "B", "C", "AB", "AC", "BC", "ABC"), 
    scale = FALSE, scale.mode = c("B", "A", "C"), 
    conv = 1e-06, start="svd",
    robust = FALSE, coda.transform=c("none", "ilr", "clr"), 
    ncomp.rpca = 0, alpha = 0.75, robiter=100, crit=0.975, trace = FALSE)
Arguments
X | 
 3-way array of data  | 
P | 
 Number of A-mode components  | 
Q | 
 Number of B-mode components  | 
R | 
 Number of C-mode components  | 
center | 
 Whether to center the data  | 
center.mode | 
 If scaling the data, on which mode to do this  | 
scale | 
 Whether to scale the data  | 
scale.mode | 
 If centering the data, on which mode to do this  | 
conv | 
 Convergence criterion, defaults to   | 
start | 
 Initial values for the A, B and C components. Can be   | 
robust | 
 Whether to apply a robust estimation  | 
coda.transform | 
 If the data are a composition, use an ilr or clr transformation. 
Default is non-compositional data, i.e.   | 
ncomp.rpca | 
 Number of components for robust PCA  | 
alpha | 
 Measures the fraction of outliers the algorithm should resist. Allowed values are between 0.5 and 1 and the default is 0.75  | 
robiter | 
 Maximal number of iterations for robust estimation  | 
crit | 
 Cut-off for identifying outliers, default   | 
trace | 
 Logical, provide trace output  | 
Details
The function can compute four versions of the Tucker3 model:
Classical Tucker3,
Tucker3 for compositional data,
Robust Tucker3 and
Robust Tucker3 for compositional data.
This is controlled through the parameters robust=TRUE and coda.transform="ilr".
Value
An object of class "tucker3" which is basically a list with components:
fit | 
 Fit value  | 
fp | 
 Fit percentage  | 
A | 
 Orthogonal loading matrix for the A-mode  | 
B | 
 Orthogonal loading matrix for the B-mode  | 
Bclr | 
 Orthogonal loading matrix for the B-mode, clr transformed.
Available only if   | 
C | 
 Orthogonal loading matrix for the C-mode  | 
GA | 
 Core matrix, which describes the relation between   | 
iter | 
 Number of iterations  | 
rd | 
 Residual distances  | 
sd | 
 Score distances  | 
flag | 
 The observations whose residual distance   | 
robust | 
 The paramater   | 
coda.transform | 
 The input paramater   | 
La | 
 Diagonal matrix containing the intrinsic eigenvalues for A-mode  | 
Lb | 
 Diagonal matrix containing the intrinsic eigenvalues for B-mode  | 
Lc | 
 Diagonal matrix containing the intrinsic eigenvalues for C-mode  | 
Author(s)
Valentin Todorov valentin.todorov@chello.at and Maria Anna Di Palma madipalma@unior.it and Michele Gallo mgallo@unior.it
References
Tucker, L.R. (1966). Some mathematical notes on three-mode factor analysis. Psychometrika, 31: 279–311.
Egozcue J.J., Pawlowsky-Glahn, V., Mateu-Figueras G. and Barcel'o-Vidal, C. (2003). Isometric logratio transformations for compositional data analysis. Mathematical Geology, 35(3): 279–300.
Examples
#############
##
## Example with the UNIDO Manufacturing value added data
data(va3way)
dim(va3way)
## Treat quickly and dirty the zeros in the data set (if any)
va3way[va3way==0] <- 0.001
##
res <- Tucker3(va3way)
res
print(res$fit)
print(res$A)
## Print the core matrix
print(res$GA)
## Distance-distance plot
plot(res, which="dd", main="Distance-distance plot")
## Paired component plot, mode A
plot(res, which="comp", main="Paired component plot (mode A)")
## Paired component plot, mode B
plot(res, which="comp", mode="B", main="Paired component plot (mode B)")
## Joint biplot
plot(res, which="jbplot", main="Joint biplot")
## Trajectory
plot(res, which="tjplot", choices=c(1:4), arrows=FALSE, main="Trajectory biplot")