pca.distances {rrcov} | R Documentation |
Compute score and orthogonal distances for Principal Components (objects of class 'Pca')
Description
Compute score and orthogonal distances for an object (derived from)Pca-class
.
Usage
pca.distances(obj, data, r, crit=0.975)
Arguments
obj |
an object of class (derived from) |
data |
The data matrix for which the |
r |
rank of data |
crit |
Criterion to use for computing the cutoff values. |
Details
This function calculates the score and orthogonal distances and the appropriate cutoff values for identifying outlying observations. The computed values are used to create a vector a of flags, one for each observation, identifying the outliers.
Value
An S4 object of class derived from the virtual class Pca-class
-
the same object passed to the function, but with the score and orthogonal
distances as well as their cutoff values and the corresponding flags appended to it.
Author(s)
Valentin Todorov valentin.todorov@chello.at
References
M. Hubert, P. J. Rousseeuw, K. Vanden Branden (2005), ROBPCA: a new approach to robust principal components analysis, Technometrics, 47, 64–79.
Todorov V & Filzmoser P (2009), An Object Oriented Framework for Robust Multivariate Analysis. Journal of Statistical Software, 32(3), 1–47. doi:10.18637/jss.v032.i03.
Examples
## PCA of the Hawkins Bradu Kass's Artificial Data
## using all 4 variables
data(hbk)
pca <- PcaHubert(hbk)
pca.distances(pca, hbk, rankMM(hbk))