| PcaCov-class {rrcov} | R Documentation |
Class "PcaCov" - Robust PCA based on a robust covariance matrix
Description
Robust PCA are obtained by replacing the classical covariance matrix
by a robust covariance estimator. This can be one of the available
in rrcov estimators, i.e. MCD, OGK, M, S or Stahel-Donoho estimator.
Objects from the Class
Objects can be created by calls of the form new("PcaCov", ...) but the
usual way of creating PcaCov objects is a call to the function
PcaCov which serves as a constructor.
Slots
quan:Object of class
"numeric"The quantilehused throughout the algorithmcall,center,rank,loadings,eigenvalues,scores,k,sd,od,cutoff.sd,cutoff.od,flag,n.obs,eig0,totvar0:-
from the
"Pca"class.
Extends
Class "PcaRobust", directly.
Class "Pca", by class "PcaRobust", distance 2.
Methods
- getQuan
signature(obj = "PcaCov"): ...
Author(s)
Valentin Todorov valentin.todorov@chello.at
References
Todorov V & Filzmoser P (2009), An Object Oriented Framework for Robust Multivariate Analysis. Journal of Statistical Software, 32(3), 1–47. doi:10.18637/jss.v032.i03.
See Also
PcaRobust-class, Pca-class, PcaClassic, PcaClassic-class
Examples
showClass("PcaCov")