PcaCov-class {rrcov} | R Documentation |
Class "PcaCov" - Robust PCA based on a robust covariance matrix
Description
Robust PCA are obtained by replacing the classical covariance matrix
by a robust covariance estimator. This can be one of the available
in rrcov
estimators, i.e. MCD, OGK, M, S or Stahel-Donoho estimator.
Objects from the Class
Objects can be created by calls of the form new("PcaCov", ...)
but the
usual way of creating PcaCov
objects is a call to the function
PcaCov
which serves as a constructor.
Slots
quan
:Object of class
"numeric"
The quantileh
used throughout the algorithmcall
,center
,rank
,loadings
,eigenvalues
,scores
,k
,sd
,od
,cutoff.sd
,cutoff.od
,flag
,n.obs
,eig0
,totvar0
:-
from the
"Pca"
class.
Extends
Class "PcaRobust"
, directly.
Class "Pca"
, by class "PcaRobust", distance 2.
Methods
- getQuan
signature(obj = "PcaCov")
: ...
Author(s)
Valentin Todorov valentin.todorov@chello.at
References
Todorov V & Filzmoser P (2009), An Object Oriented Framework for Robust Multivariate Analysis. Journal of Statistical Software, 32(3), 1–47. doi:10.18637/jss.v032.i03.
See Also
PcaRobust-class
, Pca-class
, PcaClassic
, PcaClassic-class
Examples
showClass("PcaCov")